Organization of the Department

Establishment of the Department

The Department of Biology of the School of Sciences and Engineering at the University of Crete, has launched a Postgraduate Program of Studies since 1983 and an Undergraduate Program of Studies since 1987. The Department is recognized internationally as a center of up-to-date university education and active research in various fields of current Biology.

Administration of the Department

Chairperson:
Kriton Kalantidis, Professor 2810-394084, kalantidis@uoc.gr

Vice Chairperson:
Emmanouil Ladoukakis, Associate Professor 2810-394435, ladoukakis@uoc.gr

Department’s Secretariat: Fax: 2810-394404

Staff: Maria Smyrnaki 2810-394401, smyrnaki@uoc.gr
Ioanna Vlatakis 2810-394409, tvlatakis@uoc.gr
Helen Maraveya 2810-394403, 394025, maraveya@uoc.gr
Efrossini Bervanaki 2810-394402, bervan@uoc.gr
Georgia Papadaki 2810-394400, geopap@uoc.gr

General Description of the Department

Teaching staff and laboratory units of the Department are organized in distinct Research Sections. Each Section coordinates teaching and research of particular subject areas, corresponding to specific scientific fields. In accordance with the Decree 103/83, FEK (Government Gazette Issue) 48 of the relevant Article, currently there are three (3) Divisions at the Department of Biology:

SECTION OF BIOCHEMISTRY, MOLECULAR BIOLOGY, CELLULAR AND DEVELOPMENTAL BIOLOGY

This Division covers topics of Biochemistry, Molecular Biology, Cellular and Developmental Biology, Genetics and Immunology, with main focus on the study of cells as a functional unit and on cellular functions in relation to their environment.

SECTION OF BIOLOGY OF ORGANISMS, POPULATIONS, ENVIRONMENT AND MARINE BIOLOGY

This Division covers topics of Zoology, Botany, Ecology, Physiology, Marine Biology and it mainly studies the biology of organisms, populations and environment.

SECTION OF BIOTECHNOLOGY AND APPLIED BIOLOGY

This Division covers various applications of biology and biological processes in mechanics, technology, environment and medicine.

Faculty staff– Fields of teaching and research activities
SECTION OF BIOCHEMISTRY, MOLECULAR BIOLOGY, CELLULAR AND DEVELOPMENTAL BIOLOGY

Irene Athanasakis, Professor, PhD 1988, University of Alberta.
Immunology.

George Garinis, Professor, PhD 2001, National and Kapodistrian University of Athens
Molecular genetics of mice – Senescence, Cancer and Longevity.

Christos Delidakis, Professor, PhD 1988, Harvard University.
Molecular Biology of Drosophila -Neurogenetics.

George Zachos, Associate Professor, PhD 1997, University of Crete.
Molecular Biology of Drosophila -Neurogenetics.

Ioanna Keklikoglou, Assistant Professor, PhD 2012 University of Heidelberg.
Molecular Mechanisms of Animal Differentiation and Development.

Dimitrios Papadopoulos, Associate Professor, PhD 2010, University of Basel.
Molecular Biology

SECTION OF BIOLOGY OF ORGANISMS, POPULATIONS, ENVIRONMENT AND MARINE BIOLOGY

Kriton Kalantidis, Professor, PhD 1995, University of Nottingham.
Evolutionary Developmental biology of higher plants.

Kyriakos Kotzambasis, Professor, PhD 1987, University of Marburg.
Plant Biochemistry and Physiology, Photosynthesis, Photobiology and Bioenergetics

George Koumoundouros, Professor, PhD 1998, University of Crete.
Marine Biology – Fish Biology

Emmanouil Ladoukakis, Associate Professor, PhD 2001, University of Crete.
Evolutionary Zoology

Konstantina Lyka, Associate Professor, PhD 1996, University of Tennessee.
Biomathematics

Panagiotis Moschou, Associate Professor, PhD 2009, University of Crete.
Molecular Physiology and Plant Biotechnology

Michael Pavlidis, Professor, PhD 1990, National & Kapodistrian University of Athens.
Biology – Marine Ecology, Fish Physiology – Endocrinology

Nikolaos Poulakakis, Professor, PhD 2005, University of Crete.
Systematic Zoology, Molecular Phylogenesis, Phylogeography and genetic management of animal populations, Ancient DNA (aDNA)

Stergios Pirintsos, Professor, PhD 1993, Aristotle University of Thessaloniki.
Plant Ecology, Ecology and Management of Terrestrial Ecosystems, Ecology of Rare and Endemic Plant Species, Biomonitoring of Environmental Changes, Environmental Risk Assessment.

Kyriaki Sidiropoulou, Associate Professor, PhD 2003, Rosalind Franklin University.
The role of intrinsic excitability on learning and memory. The role of inhibition in cortical information processing, Computational Neuroscience.

SECTION OF BIOTECHNOLOGY AND APPLIED BIOLOGY

Electra Gizeli, Professor, PhD 1993, University of Cambridge.
Bio-Nano Technology – Biosensors

Ioannis Karakassis, Professor, PhD 1991, University of Crete.
Marine Ecology.

Maroudio Kentouri, Professor, PhD 1978, Universite des Sciences et Techniques du Languedoc, Montpellier.
Fish Cultures, Behaviour of Fishes under Controlled conditions.
Panagiotis Sarris, Assistant Professor, PhD 2009, University of Crete.
Microbiology

Maria Dafni Mpazopoulou, Assistant Professor, PhD 2009, University of Crete.
Oxidative stress; Redox signaling during aging and host-microbe interactions. Aging of the nervous system and amyloid-induced pathologies in C. elegans. Microfluidics for nervous system and behavioral studies in small model organisms.

Retired Faculty Staff and Emeritus Professors

Procedures of Admission

Students are admitted to the Department of Biology, University of Crete, is consistent following all legal ways defined by the Ministry of Education and Religious Affairs for all Universities (Panhellenic Exams, special categories of large families of three or more children, immigrants, Greek emigrants, people suffering from serious diseases, ranking following exams. Recognition of courses complies with 4115/30-1-2013 Law, Article 35.

Participation in the ERASMUS Program

The Department participates in European Union (EU) Programs designed to promote free student mobility, while recognizing successfully completed courses from other European Universities within the framework of the above mentioned Programs.

Education and research objectives of Biology Department

The students of the Biology Department have the opportunity to obtain an adequate theoretical background and practical experience in advanced technologies in various biological fields such as Molecular Biology and Genetics, Cellular and Developmental Biology, Evolutionary Biology, Ecology, Marine Biology, Applied Biology, as well as Bio- and nanotechnology.

The Department collaborates with the internationally recognized Research Institutes, located in Crete under the supervision of the General Secretary of Research and Technology (ΓΓΕΤ), the Institute of Molecular Biology and Biotechnology (active participation of Faculty professors) (IMBB/ITE, http://www.imbb.forth.gr) and the Hellenic Centre of Marine Research (HCMR, http://www.hcmr.gr/indexel.php). Additionally, it collaborates with the Natural History Museum of the University of Crete (http://www.nhmc.uoc.gr) which provides valuable scientific and educational services on Eastern Mediterranean environmental matters, as well as with the Botanical Garden of the University of Crete (http://www.bg.uoc.gr) and the National Agricultural Research Foundation (http://www.nagref.gr).

Occupational profile of graduates

Graduates of the Biology Department at the University of Crete have been pursuing a professional career towards various directions in the public and private sector in organizations concerned with biomedicine and health in general, with biotechnology, environment, aquacultures, as well as with education and research in the above mentioned fields.

Access to further studies

The Post-graduate Studies Programs which are carried out by the Department lead to the acquisition of a specialization Master’s Degree, followed by a Doctoral Degree (Ph. D.) in the following fields: 1) Molecular Biology and Biomedicine, 2) Molecular Biology and Plant Biotechnology 3) Environmental Biology -Management of Terrestrial and Marine Resources 4) Protein Biotechnology 5) Bioethics and 6) Erasmus Mundus Joint Master Degree in Aquaculture, Environment and Society.

Regulations and Curriculum
Summary of the curriculum. Central axes / directions of the curriculum

The curriculum comprises a number of courses whose subject matter covers a wide range of biological fields, while offering students high standard of knowledge in contemporary Molecular Biology, Cell Biology, Biology of Populations and Organisms (mandatory courses). At the beginning of the 4th semester of studies, students choose one of the two directions of the curriculum and attend all mandatory courses of their selected direction, while also choose a series of optional courses. The directions (according to decree No 66442A/B1, Government Gazette Issue (FEK) 1658 / 12-11-2003) constitute two cutting edge areas of research in Biological sciences and are as follows:

A. Biomolecular Sciences and Biotechnology (Molecular Direction)
B. Environmental Biology and Management of Biological Resources (Environmental Direction)

Brief Description of Course Units – Type of Courses:

<table>
<thead>
<tr>
<th>A. MANDATORY COURSES</th>
<th>NUMBER OF COURSES</th>
<th>Total ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Mandatory Courses of Molecular and Environmental Direction</td>
<td>32</td>
<td>135</td>
</tr>
<tr>
<td>Molecular Direction</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>Environmental Direction</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. COMPULSORY ELECTIVE COURSES</th>
<th>NUMBER OF COURSES</th>
<th>Total ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Compulsory Elective Courses of Molecular and Environmental Division</td>
<td>13</td>
<td>52</td>
</tr>
<tr>
<td>Diploma Thesis</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Trimester Laboratory Course</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Reading Course</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Internship (3 month duration)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Erasmus Internship (3 month duration)</td>
<td></td>
<td>3 (20 will be indicated in the Diploma Supplement)</td>
</tr>
<tr>
<td>Molecular Direction</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Environmental Direction</td>
<td>9</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ. FREE CHOICE COURSES</th>
<th>NUMBER OF COURSES</th>
<th>Total ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Choice Courses</td>
<td></td>
<td>32 (they are taken into account upon graduation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSES OFFERED FROM OTHER DEPARTMENTS</th>
<th>NUMBER OF COURSES</th>
<th>Total ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses from other Departments</td>
<td>Courses offered from other Departments</td>
<td>18 (included in 32 ECTS allocated to Free Choice Courses and are taken into account for graduation)</td>
</tr>
</tbody>
</table>

Courses offered each semester (winter and spring) are clearly outlined at the beginning of each academic year. Throughout the first three (3) semesters of study, students are registered in 18 mandatory common courses for both directions, coupled with 3 English language courses. At the 4th semester students are registered in one more English language course. At the end of the 4th semester, students are asked to choose the direction corresponding to the areas of their scientific interest. At the 4th, 5th and 6th semesters of study, they are registered in both the common mandatory courses of the two directions and the compulsory ones of their direction.

At each academic semester students are registered for the first time in courses (compulsory, elective, free choice) that should not exceed 35 ECTS. On top of the 35 ECTS, students are allowed to register to courses that they were previously registered but not successfully examined. Also on top of the 35 ECTS can be considered the Practical Training as long as it takes place during the summer period.

Foreign Language courses
Compulsory Elective Courses may be taught in English in case of Erasmus students’ attendance.

Transfer of ECTS through the Erasmus Program

Students who participate in the Erasmus Program, after selecting one of the network Universities, can attend courses of their choice and achieve the corresponding credit transfer for their division, after approval of the Undergraduate Studies Committee and the Department’s Assembly. It should be clarified that if a course title-content of the receiving University selected by the students coincides with our Department’s curriculum courses, it can be recognized as such, only after consulting the instructor in charge. Foreign languages cannot be recognized.

Since the academic year 2007-2008 the students of our Department are eligible to be offered an internship within the framework of Erasmus Lifelong Learning Programme at a University or other organization abroad. Three months of Erasmus internship correspond to 3 ECTS, as well as 17 additional ECTS for the Degree Supplement.

Examination periods and exams

The end of teaching at each academic semester is followed by a written examination period whose duration is decided by the Dean of the School. In case students fail at a subject in the proper exam period of the academic semester, they can be re-examined during the second examination period. If they fail again they are allowed to be re-examined according to the instructions of the current Law.

Grade re-evaluation

Students are allowed to apply for re-evaluation of grades obtained at either past or current academic semester courses. For the former they should apply to the Secretary during the period of each semester course declaration. Students who wish to improve their grades -although they could be graduates- are eligible to request re-grading and postponement of their graduation for one examination period. They should hold an identity card and sign when applying, while their application should be assigned with a protocol number upon submission.

Grading system and requirements for students’ graduation

There is a continuous process of students’ evaluation throughout the whole semester, which is indispensable to the educational process. Grading is determined on the basis of a 0 to 10 scale. Examination is considered successful if students get at least five (5). The instructor in charge of each course is fully responsible for deciding how to test students’ progress, as well as grading and announcing the results. The exact format of the examination process (number of tests-frequency-way of testing and evaluation of student progress) is determined and described at the beginning of each semester by the instructor who is responsible for each course. Exams take place following the Exam Rules of the Department, whose complete text can be accessed in the Department’s website (https://www.biology.uoc.gr/el/studies/undergraduate/available).

The requirements for graduation are the attendance of 8 teaching academic semesters, the successful completion of 35 mandatory courses for the Direction of Biomolecular Sciences and Biotechnology (concerning students who entered the Department in the academic year 2011-12) or 32 mandatory courses for the Direction of Environmental Biology and Management of Biological Resources, 4 mandatory semester courses of English Language and the completion of at least 240 ECTS credits for both direction.

Course structure diagram with credits (60 per academic year)

(https://www.biology.uoc.gr/el/studies/undergraduate/complete-courses-list)

<table>
<thead>
<tr>
<th>A’ Semester</th>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-101 Introduction to Zoology (N. Poulakakis)</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOA-102 Laboratory Course “Introduction to Zoology” (N. Poulakakis)</td>
<td>3 X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-103 Physics (S. Maragkaki, Pdoc)</td>
<td>2 X13</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-105 General Chemistry (G. Chatzidakis)</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-107 Organic Chemistry</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Course/ Instructor</td>
<td>hours</td>
<td>C.C.</td>
<td>ECTS</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>BIOL-109 Uses of Computers and Biological Data Bases</td>
<td>2X13</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIOL-111 English I</td>
<td>3X13</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B' Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-150 Cell Biology</td>
<td>5X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-152 Structure and Function of Plants</td>
<td>3X13</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-153 Laboratory Course in Structure and Functional Organization of Plants</td>
<td>3X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-154 Biochemistry I</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-156 Biomathematics</td>
<td>5X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-158 English II</td>
<td>3X13</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIOL-155 General Methods for the Identification and Analysis of Biological Macromolecules</td>
<td>4X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C' Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-201 Microbiology</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-203 Ecology</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-204 Methods in Ecology</td>
<td>3X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-205 Genetics I</td>
<td>5X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-207 Molecular Biology</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-208 General Methods in Genetics and Microbiology</td>
<td>3X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-211 English III</td>
<td>3X13</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D' Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-251 Methods for the Functional Analysis of Biological Macromolecules</td>
<td>3X12</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-252 Biochemistry II</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-254 Genetics II</td>
<td>3X13</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-256 Physical Chemistry</td>
<td>4X13</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOL-263 Laboratory Course in Animal Biodiversity</td>
<td>3X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Course/ Instructor</td>
<td>hours</td>
<td>C.C.</td>
<td>ECTS</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>BIOL-257 Biodiversity and Plant Evolutionary Ecology (S. Pirintsos)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-259 Laboratory Course in Plant Biodiversity (S. Pirintsos)</td>
<td>3 X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-265 Marine Biology (I. Karakassis, G. Koumoundouros)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-266 Laboratory Course in Marine Biology (I. Karakassis, M. Pavlidis, G. Koumoundouros)</td>
<td>3 X11</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL-258 English IV (M. Koutraki)</td>
<td>3 X13</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-300 Advanced Methods for the Analysis of Cellular Processes (D. Alexandraki, E. Athanasakis, K. Kotzabasis, G. Zachos)</td>
<td>3 X11</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BIOL-303 Evolution (E. Ladoukakis)</td>
<td>5 X13</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>BIOL-305 Enzyme Biotechnology (D. Mpazopoulou)</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>BIOL-307 Immunobiology (E. Athanasakis)</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>BIOL-309 Biostatistics (K. Lyka)</td>
<td>4 X13</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>BIOL-313 Biogeography (N. Poulakakis)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-315 Computational Biology ()</td>
<td>4 X13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Elective Courses

WINTER SEMESTER

a. Biomolecular Sciences and Biotechnology

<table>
<thead>
<tr>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-406 Crystal Structure Determination of Biological Macromolecules (S. Maragkaki, Pdoc)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(The course will be taught in spring semester at the academic year 2022-23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-410 RNA (The course will not be taught at the academic year 2022-23)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-412 Cell Growth, Proliferation and Cancer (G. Zachos) (Successful examination at the courses of Cell Biology, Molecular Biology,</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Genetics I and Genetics II is recommended) (The course will be taught in spring semester at the academic year 2022-23)

BIOL-418 Human Genetics: from molecular mechanisms to disease (G. Garinis) (Successful examination at the courses of Genetics I, Genetics II, Biochemistry I, Biochemistry II and Molecular Biology is required) (The course will not be taught at the academic year 2022-23)

2 x 13 2 4

b. Environmental Biology and Management of Biological Resources

<table>
<thead>
<tr>
<th>Course/Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-403 Aquacultures</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(G. Koumoundouros)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-405 Applied Ecology and terrestrial Ecosystem Management</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(S. Pirintsos)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(The course will be taught every even academic year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-409 Marine Pollution</td>
<td>2X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(I. Karakassis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(The course will be taught every even academic year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-411 Benthic Ecology</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(I. Karakassis)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course/Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-492 Neurobiology</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(K. Sidiropoulou)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-416 Special Issues in Cell Biology</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(G. Chalepakis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(The course will not be taught at the academic year 2022-23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-440 Photosynthesis</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(K. Kotzabasis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-443 Reading Course</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Faculty Member</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-444 Quarterly Laboratory Course</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Faculty Member</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-447 Developmental Plant Biology</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(K. Kalantidis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-445 Laboratory Course – Green Biotechnology</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(K. Kotzabasis, K. Kalantidis, S. Pirintsos, I. Vontas, P. Moschu, P. Sarris)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRING SEMESTER

a. Biomolecular Sciences and Biotechnology

<table>
<thead>
<tr>
<th>Course/Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-414 When Biochemistry meets Epigenetics</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(Ch. Spilianakis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(The course will be taught every odd academic year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-456 Molecular Oncogenesis</td>
<td>2 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(I. Papamathaiakis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(obligatory attendance)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Successful examination at the courses of Genetics I, Genetics II, Cell Biology, Molecular Biology and Developmental Biology is recommended)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-460 Molecular Plant Virology</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(The course will not be taught at the academic year 2022-23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL-462 Special Topics in Immunology</td>
<td>4 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(E. Athanasakis)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Successful examination at the course of Immunobiology is recommended

BIOL-468 Developmental Biology of Drosophila (obligatory attendance)
(Ch. Delidakis)

Successful examination at the courses of Cell Biology, Molecular Biology, Genetics I and Genetics II is recommended

b. Environmental Biology and Management of Biological Resources

<table>
<thead>
<tr>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-407 Topics in Physical Geography and Geomorphology (Ch. Fasoulas)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-453 Management of Marine Biological Resources (obligatory attendance) (G. Koumoundouros) (The course will not be taught at the academic year 2022-23)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-455 Marine Biotechnology (obligatory attendance) (The course will not be taught at the academic year 2022-23)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-461 Laboratory Course in Fauna of Greece (N. Poulakakis) (Successful examination at the courses of Laboratory Course in Animal Biodiversity is recommended)</td>
<td>4X13</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-471 Evolutionary Ecology (N. Poulakakis)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

c. Courses Common to both Directions

<table>
<thead>
<tr>
<th>Course/ Instructor</th>
<th>hours</th>
<th>C.C.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL-463 Photobiology (K. Kotzabasis)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-446 Molecular Evolution (E. Ladoukakis)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-450 Computational Methods in Evolution (N. Poulakakis, E. Ladoukakis)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-491 Special Topics in Biotechnology and Plant Imaging (P. Moschou)</td>
<td>3 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-493 Applications of Current Microscopy Techniques (obligatory attendance) (G. Zachos)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-443 Reading Course Faculty Member</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-444 Quarterly Laboratory Course Faculty Member</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BIOL-473 Genomes Ch. Spilianakis (Successful examination at the course of Molecular Biology is required) (The course will be taught every even academic year)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-474 Research and Communication Skills in Biology (obligatory attendance) Ch. Spilianakis</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-494 Introduction to Programming (A. Kanterakis, Pdoc) (Addressed to all students (2nd, 4th, 6th semester, etc) – no prerequisites)</td>
<td>2 X13</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>BIOL-495 Micro/nano-technologies in Biology and Molecular Diagnostics (obligatory attendance) (E. Gizeli) (Successful examination at the courses of Organic Chemistry and Biochemistry I is recommended)</td>
<td>2 X13</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Information
Department of Biology Secretariat

B. Description of individual course units

1ST YEAR FALL SEMESTER

<table>
<thead>
<tr>
<th>Course Title: Introduction to Zoology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Michael Pavlidis, Nikolaos Poulakakis</td>
</tr>
<tr>
<td>Course Code: BIOL-101</td>
</tr>
<tr>
<td>Year of study: 1</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Prerequisites: None

Recommended reading: Hickman, Roberts and Larson: Integrated Principles of Zoology. 11th edition

Teaching methods: 3h/week lectures, 3h/week lab.

Assessment methods: Written examinations

Language of instruction: Greek

<table>
<thead>
<tr>
<th>Course Title: Laboratory Course in Zoology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Michael Pavlidis, Nikolaos Poulakakis</td>
</tr>
<tr>
<td>Course Code: BIOL-102</td>
</tr>
<tr>
<td>Year of study: 1</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Prerequisites: None

Recommended reading:

<table>
<thead>
<tr>
<th>Course Title: Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: postdoc</td>
</tr>
<tr>
<td>Course Code: BIOL-103</td>
</tr>
<tr>
<td>Year of study: 1</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The main goal of the course is to offer a global understanding of physics through studying the basic principles.
Important part of global understanding is the presentation of the inevitable connection of Physics to Biology and other scientific fields.

Prerequisites: There are no prerequisites

Course contents: In order to have a global understanding of the fundamental concepts and queries of physics, all following are studied.

MECHANICS: Newton’s laws for motion and mass inertia. The concepts of momentum and energy. Circular motion, gravity and the motion of projectiles and satellites.

ELECTRICITY AND MAGNETISM: The concepts of charge, electric field and electric current. Magnetism, magnetic field and electromagnetic induction. The general concept of force, force field and energy. Electromagnetic waves.

THERMODYNAMICS: The concepts of temperature, heat and heat convection. The laws of thermodynamics, Carnot engine and the connection to physical chemistry. Phase diagrams, the atomic nature of matter, gases, liquids, solids, plasma. Properties of matter, natural and artificial materials. Connection to geology and material science.

VIBRATIONS AND WAVES: The concepts of vibrations and waves. Wave propagation and properties. The sound and light. Light emission and absorption. Colors. Light reflection, refraction and diffraction. The particle and wave nature of light.

MODERN PHYSICS: Special and general theory of relativity. The particle and wave nature of matter. Schrödinger’s wave function. The atom, the atomic orbital and the nucleus. The connection to chemistry, quantum chemistry and biology. Radioactivity, nuclear fission and fusion. Particles and principles of astrophysics.

Of primary importance is, the understanding of the concepts and queries of physics by the implementation of the absolutely necessary mathematical formalism. The connection to biological queries, concepts and methodologies is constant.

Recommended reading:

Teaching methods: Lectures 4h/week and 3h/week tutorials and multimedia presentations

Assessment methods: Written examination

Language of instruction: Greek

Course Title: General Chemistry

Name of Lecturer: Chatzidakis Georgios

Course Code: BIOL-105

Type of course: Core

Level of course:

Year of study: 1

Semester/trimester: A

ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Understanding of fundamental concepts in chemistry and development of the ability to apply these concepts in solving chemistry problems.

Prerequisites: None

Course contents:

1. Introduction. Chemistry and Measurements
2. Atoms, molecules and ions
3. Chemical reactions
 Types of chemical reactions. Ions in aqueous solution
4. The gaseous state
 Laws of gases. Kinetic-molecular theory
5. Quantum Theory of the atom
 Model of Bohr. Quantum mechanics and quantum numbers
6. Electronic structures and periodicity
 Electron configurations of atoms. Periodic relationships between elements.
8. Molecular geometry and chemical bond theory
 The VSEPR model. Valence-bond theory. Complex ions and coordination Compounds.
9. States of Matter: Liquids and Solids
 Changes of matters. Intermolecular forces. Physical properties.

Recommended reading: Ebbing and Gammon, “General Chemistry”, 10th edition

Teaching methods: 3 hours of lectures plus 1 hour problem solving per week

Assessment methods: Written examination

Language of instruction: Greek

Course Title: Organic Chemistry

Name of Lecturer: Electra Gizeli

Course Code: BIOL-107
Type of course: Core
Level of course:
Year of study: 1
Semester/trimester: A
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To become familiar with organic structures and chemical reactions

Prerequisites: None

Course contents: Introduction to the basic principles of general and organic chemistry (atomic structure, types of chemical bonds, acids and bases, stereochemistry). Nomenclature, structure, properties and reaction mechanisms of organic molecules (alkanes, cycloalkanes, alkenes, alkyl halides, benzene, alcohols, ethers, epoxides, aldehydes, ketones, carboxylic acids, carbohydrates, amino acids, peptides, proteins, lipids and nucleic acids). Brief introduction to spectrometry (mass spectrometry, infra red, nuclear magnetic resonance).

Recommended reading: Organic Chemistry Vol. I & II, John McMurry

Teaching methods: Lectures

Assessment methods: Written exam

Language of instruction: Greek

Course Title: Uses of Computers and Biological Databases

Name of Lecturer: (PostDoc)

Course Code: BIOL-109
Type of course: Core
Level of course:
Course Title
English I

<table>
<thead>
<tr>
<th>Year of study</th>
<th>Semester/trimester</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences)
A good grasp of English whereby the students can familiarize themselves with English as it is used in a scientific context. Emphasis is given on grammar, reading and speaking skills.

Prerequisites
None

Course contents
- Reading comprehension of technical texts, focus on terminology and appropriate language in use, speaking, grammar revision, introducing academic writing, listening

Recommended reading
- English 1 File notes in the Library
- English 1 links & extras in our blog: http://www.englishbiology.wordpress.com

Teaching methods
- Reading and comprehending texts in class, performing interactive group activities, writing in class, vocabulary build-up and grammar practice through Internet in class, commenting on issues related to biology in order to practice oral skills.

Assessment methods
- 3hr exam at the end of term, vocabulary tests, brief oral presentation of a biology-oriented topic, class interactive participation and homework submission throughout the semester.

Note: Students have the choice to submit a certificate of C1 level and sit a diagnostic test at the beginning of the semester; they can get exempted from English I if their grade is at least 7/10.
Language of instruction: English

1ST YEAR SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course Title: Cell Biology</th>
<th>Name of Lecturer: George Chalepakis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: BIOL-150</td>
<td>Type of course: Core</td>
</tr>
<tr>
<td>Year of study: 1</td>
<td>Level of course:</td>
</tr>
<tr>
<td>Semester/trimester: B</td>
<td>ECTS: 6</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Cell biology of animal cells

Prerequisites: None

Course contents:
- **Eukaryotic Cells:** evolution.
- **Biological Membranes:** lipid bilayer, fluidity and asymmetry of the bilayer, membrane proteins, membrane transport, carrier proteins, ion channels.
- **Mitochondrion:** membranes, functional specialization of internal compartments, oxidation, chemiosmotic process, the respiratory chain and ATP-synthase, the genome of mitochondria.
- **Endoplasmic Reticulum (ER):** Rough ER, Smooth ER, direction of signal peptides to the Rough ER, topology of multipass transmembrane proteins, soluble proteins in the ER, N-linked glycosylation in ER.
- **Golgi Apparatus:** ER - Golgi - communication, O-linked glycosylation in Golgi, oligosaccharide chains processing in Golgi, secretory vesicles, synaptic vesicles.
- **Lysosomes:** Transport from trans Golgi to lysosomes, transport of lysosomal enzymes.
- **Peroxisomes:** Oxidative reactions, import of proteins into peroxisomes.
- **Endocytosis / Vesicular Transport:** Endosomes, pinocytic vesicles, Clathrin-coated pits, receptor mediated endocytosis, coatamer-coated vesicles, GTP-binding proteins in vesicular transport.
- **Cell Nucleus:** Membranes of the nuclear envelope, nuclear pore, transport of macromolecules, chromosomal DNA and its packaging, the global structure of chromosomes, nucleolus.
- **Cytoskeleton:** The nature and function of cytoskeleton, intermediate filaments, microtubules (microtubule-associated proteins, motor proteins and movements, centrioles and basal bodies), actin filaments (actin binding proteins, motor proteins, microvilli, migration of animal cells, muscle contraction).
- **Extracellular Space:** Cell junctions, cell-cell adhesion, the extracellular matrix.
- **Cell-Division Cycle:** The general strategy and phases of the cell cycle, the cell-cycle control system, cell-division controls in multicellular animals, growth factors, mitosis, cytokinesis.

Practicals: Light and Electron Microscopy.

Recommended reading:
- Cell Biology, L. Margaritis et al., 4th edition
- Cell Biology, B. Marmaras and M. Lampropoulou, 4th edition

Teaching methods: Power Point Presentation

Assessment methods: Written Examination

Language of instruction: Greek

Course Title: Structure and Function of Plants

<table>
<thead>
<tr>
<th>Course Title: Structure and Function of Plants</th>
<th>Name of Lecturer: Kyriakos Kotzabasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: BIOL-152</td>
<td>Type of course: Core</td>
</tr>
<tr>
<td>Level of course:</td>
<td></td>
</tr>
<tr>
<td>Year of study: 1</td>
<td>Semester/trimester: B</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences)

Knowledge focused on the macromolecular structure, plant cell biology and plant structure.

Prerequisites: None

Teaching methods: 3 hours lecture per week plus lab session 3 hours per week

Assessment methods: Written examination

Language of instruction: Greek
Course Title: Biochemistry I

Name of Lecturer: Dimitrios Tzamarias
Course Code: BIOL-154
Type of course: Core
Level of course:
Year of study: 1
Semester/trimester: B
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Introduction to the basic principles of Biochemistry. Structure and function of biomolecules, Metabolism and Energy, Regulation and Bioenergetics.

Prerequisites: None

Course contents: 4 hours/week (42 hours/semester)
Transducing and storing energy: Metabolism, basic concepts and design. Glycolysis and gluconeogenesis. The Citric acid cycle. Oxidative phosphorylation. The Calvin cycle and the pentose phosphate pathway. Glycogen metabolism.

Lab course Content
1) acid-base titrations, acids-bases, pH, hydrolysis and buffers. 2) Detecting lipids, proteins and carbohydrates in food. 3) Characterizing carbohydrates. 4) Enzymatic catalysis. 5) Chromatographic analysis of proteins and amino-acids

Recommended reading:

Teaching methods: Lectures (PowerPoint Presentations)

Assessment methods: Written Examination, written Midterm exam

Language of instruction: Greek

Course Title: General methods for the identification and analysis of biological macromolecules

Name of Lecturer: Technical and Laboratory staff
Course Code: BIOL-155
Type of course: Compulsory
Level of course:
Year of study: 1
Semester/trimester: 2
ECTS: 3

Objectives of the course:
The primary objective of this course is for students to (1) learn fundamental approaches for experimentally investigating biological macromolecules, (2) learn the theoretical foundations for the methods used, and (3) understand the applicability of the biochemical methods to realistic situations.

Prerequisites: none

Course contents
1. Preparation of solutions (3 hours)
2. Acid-Base Titrations and Neutralization reactions (3 hours)
3. Redox (reduction-oxidation) reactions-Spectroscopic methods (3 hours)
4. Synthesis of Aspirin (4 hours)
5. Quantification of Protein concentration (4 hours)
6. The detection of Fats, Proteins and Carbohydrates in Foods (4 hours)
7. Digestion (fats, proteins, carbohydrates), general methods for characterizing the products (4 hours)
8. Extraction, chromatographic identification and absorption spectra of photosynthetic pigments (3 hours)
9. Extraction of plasmid DNA (3 hours)
10. Quantification, electrophoresis and digestion of plasmid DNA (3 hours)
11. Extraction of eukaryotic RNA (3 hours)

Recommended reading:

Teaching methods: Introduction to the lab and practical training

Assessment methods: Delivery of each lab report and written examinations

Language of instruction: Greek

Course Title: Biomathematics
Name of Lecturer: Konstadia Lika
Course Code: BIOL-156
Type of course: Core
Level of course:
Year of study: 1
Semester: B
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): This course provides an introduction to a variety of mathematical topics of use in analyzing problems arising in the biological sciences.

Prerequisites: None

Course contents: Limits of functions and continuity. Calculus of exponential, logarithmic, trigonometric and allometric functions and applications. Derivatives and applications. Antiderivatives and integrals, integration techniques and applications of integration. Difference and differential equations. Introduction to mathematical modeling. Discrete and continuous in time dynamical systems - linear and nonlinear examples, equilibrium, and stability. Introduction to discrete probability- sample space, counting techniques, conditional probability, independence, Bayes theorem, Markov chains. Discrete and continuous random variables and distributions.

Recommended reading:
- M. R. Cullen “Mathematics for the biosciences”. Techbooks, 1983
- C. Neuhauser “Calculus for biology and medicine” Pearson/Prentice Hall, 2004

Teaching methods: Four 45-minute lectures per week

Assessment methods: Written examination

Language of instruction: Greek

Course Title: English II
Name of Lecturer: Maria Koutraki
Course Code: BIOL-158
Type of course: Core
Level of course:
Year of study: 1
Semester/trimester: B
ECTS: 2

Objectives of the course (preferably expressed in terms of learning outcomes and competences
• To familiarize students with scientific terminology and in particular that of Biology, Molecular biology and Genetics
• To introduce the skills and language of the laboratory, graphs and charts, biology English related note-taking, summarizing, report writing, classifying, comparing, describing processes and giving instructions.
• To enable students to communicate their English effectively in a scientific context, to write in a manner adequate to the ACS style for scientists.
• To enable students master the language of science and achieve academic and professional development.

Prerequisites: None

Course contents: Reading, speaking, listening, grammar, sentence structure, introducing academic writing (analysis & synthesis skills, paraphrasing and quoting) & translation of scientific and technical sources, familiarising students with terminology and technical vocabulary.

Recommended reading: English 2 File notes in the Library, English 2 links & extras in our blog:
http://www.englishbiology.wordpress.com

Teaching methods: Reading and comprehending texts in class, performing interactive group activities, writing in class, vocabulary build-up and grammar practice through Internet in class, commenting on issues related to biology in order to practice oral skills

Assessment methods: 3hr exam at the end of term, class participation, progress test, brief (5’) oral presentation of biology-oriented topics, participation through class work & homework submitted throughout the semester

Language of instruction: English

2nd YEAR FALL SEMESTER

Course Title: Microbiology
Name of Lecturer: Panagiotis F. Sarris
Course Code: BIOL.201 Type of course: Core Level of course:
Year of study: 2 Semester/trimester: C ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Basic principles of microbial cell chemistry; Cell structure of microorganisms; Molecular Microbiology; Energy and metabolism of microorganisms; Cellular regulation in Bacteria and Archaea; Cell division in Bacteria and Archaea; Genomic recombination; Principles of molecular phylogeny in microbiology; Principles of microbial systematic; Basic principles of genetic engineering and Biotechnology; Human-Microbe Interactions; Basic principles of Virology; Basic principles of Mycology.

Prerequisites: NO

Course contents:
Principles of microbial Cell Chemistry:
• Chemical base of living organisms, groups of biological macro-elements, from the simple structural units to the macro-complexes, the chemical bonds in biomolecules.

Cell Structures of Microorganisms:
• Cell membrane and function (Archaea, Bacteria).
• Cell wall of prokaryotes: Gram negative, Gram positive bacteria and Archaea, Outer membrane of Gram negative bacteria.
• Movement of microorganisms.
• Membrane transport systems in Gram-negative and Gram-positive bacteria.

Molecular Microbiology:
• Steps in genetic information flow, structure of the prokaryotic genomes, the central dogma of Molecular Biology.
• Basic principles of Molecular Biology: Genome Replication, Transcription and Translation in prokaryotic organisms.
• Gene expression regulation in Bacteria and Archaea - RNA polymerase, transcription factors, operon structure (arg, lac, mal, trp).

Energy and Metabolism of microorganisms:
• Basic principles of energy.
• Cell energy principles.
• Absorbance of chemicals from the environment.
• Membrane transporters.
• Oxidation-reduction (redox) reaction - Fermentation and Respiration.

Cellular Regulation in Bacteria and Archaea:
• The basic pathways to gene expression regulation in Bacteria and Archaea: Transcriptional regulation, Post-Transcriptional regulation, Translational regulation, Post-Translational regulation.
• Operons and Regulons.
• Transcriptional regulation in Archaea.
• Attenuation.
• Reactive inhibition.
• Quorum Sensing.

Cell Division in Bacteria and Archaea:
• Cell division.
• Dividosome.
• Genome Replication in rapidly growing cells.
• Replosome, double-stranded Replication.
• "Θ" Cairnes structures.
• Mutation, the molecular basis of mutagenesis.
• Genotype and Phenotype.

Genetic recombination:
• Absorption of foreign DNA
• Molecular mechanisms of genomic material transfer: Transformation, Conjugation.
• Transposons.
• Gene transfer in Archaea.
• CRISPR.

Basic Principles of Molecular Phylogeny in Microbiology:
• The evolutionary origin of microorganisms.
• Phylogenetic trees.
• Phylogeny and DNA-DNA hybridization.

Basic Principles of Microbial Systematic:
• The species concept in Microbiology.
• Phenotypic analysis.
• Genotypic analysis.
• Taxonomic methods in microbial systematics.
• Nomenclature of Microorganisms.

Basic Principles of Genetic Engineering and Biotechnology:
• Restriction enzymes and nucleic acids.
• Protection against restriction enzymes.
• Hybridization of nucleic acids.
• Polymerase chain reaction (PCR), applications
• Cloning vectors, plasmids, binary vectors, BACs, YACs
- Molecular cloning.
- Products from genetically modified microorganisms: genetically modified vaccines (recombinant vaccines).
- Identification and Isolation of “environmental genes”.
- Metabolic engineering.

Human-microbe interactions:
- Colonization.
- Normal microflora: Skin microflora, oral cavity microflora, Gastrointestinal tract microflora.
- Changing the normal microflora - probiotics.
- Pathogenesis (Pathogenicity) and Infection.
- Microbial toxins, endotoxins, exotoxins, effectors.
- Basic principles of immunology: antigen-antibody recognition, adhesion, fluorescent antibodies, ELISA.
- Basic principles of epidemiology.

Basic principles of Virology:
- Viruses - Classification, Structure (virion, viral envelope), viral load, viral replication.
- Examples of viruses: Hepatitis C virus, Hepatitis B virus, Human immunodeficiency virus.
- Molecular Virology.

Basic Principles of Mythology:
- Fungal and Oomycetes morphology.
- Classification of fungi and Oomycetes.
- Fungal & Oomycetes Genetics.
- Host Infection.

Recommended Reading: *Brock Biology of microorganisms*, Madigan M, Martinko J. and Parker J. Prentice Hall.

Teaching methods: Live teaching and/or online teaching

Assessment methods:
The final exams are written and may include all or some of the following:
- “Short Answer (1-2 sentences)” Questions,
- “One or two paragraph(s) answering” Questions,
- “Multiple Choice” questions

Ability to prepare/write an essay with a presentation (on specific occasions).

Language of instruction: Greek

Course Title: Ecology
Name of Lecturer: Stergios Pirintsos
Course Code: BIOL-203
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: C
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Adequate knowledge about mechanisms and processes in nature that take place in the ecological scale of time

Prerequisites: None

Interspecific relationships. Life strategies. Population dynamics patterns.

Global environmental problems: Biodiversity. Climate change. Pollution.

Recommended reading:

Teaching methods: Lectures: 4 hours/week

Assessment methods: Written examination: theory (100%)

Language of instruction: Greek

Course Title: Methods in Ecology

Name of Lecturer: Stergios Pirintsos

<table>
<thead>
<tr>
<th>Course Code: B I O L 2 0 4</th>
<th>Type of course: Core</th>
<th>Level of course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of study: 2</td>
<td>Semester/trimester: C</td>
<td>ECTS: 3</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Adequate knowledge about mechanisms and processes in nature that take place in the ecological scale of time

Prerequisites: None

Recommended reading:

Teaching methods: Lectures: 4 hours/week, Lab: 3 hours/week, Excursion: fieldwork in terrestrial ecosystems

Assessment methods: Written examination: theory (100%) and lab (pass / non pass)

Language of instruction: Greek

Course Title: Genetics I

Name of Lecturer: Christos Delidakis

Course Code: BIOL-205

<table>
<thead>
<tr>
<th>Type of course:</th>
<th>Core</th>
<th>Level of course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester/trimester:</td>
<td>C</td>
<td>ECTS:</td>
</tr>
</tbody>
</table>

Year of study: 2

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Prerequisites: None

Course contents: General genetics: introduction; Mendelian analysis; chromosomal theory of inheritance; extension of Mendelian analysis; linkage; genomics; chromosomal aberrations: structural differences; chromosomal aberrations: differences in chromosome number; DNA structure; the nature of the gene; DNA function; gene mutations; extranuclear genomes (mitochondria/chloroplasts); bacterial and phage genetics: conjugation; transduction; transformation; recombinant DNA technology (vectors, restriction enzymes – DNA mapping, cloning, selection, library construction, DNA sequencing), control of gene expression I (prokaryotes, lac operon, positive and negative control).

Recommended reading: Classical and Molecular Genetics, Konstantinos Triantafyllidis

Teaching methods: 4 hours lecture

Assessment methods: Written examination

Language of instruction: Greek

Course Title: Molecular Biology

Name of Lecturer: Charalampos Spilianakis

Course Code: BIOL-207

<table>
<thead>
<tr>
<th>Type of course:</th>
<th>Core</th>
<th>Level of course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester/trimester:</td>
<td>C</td>
<td>ECTS:</td>
</tr>
</tbody>
</table>

Year of study: 2

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

understanding life processes at the molecular level

Prerequisites: None

Recommended reading: GENES VIII

Teaching methods: Classes

Assessment methods: Mid-term exam and final (multiple choices, descriptive questions, critical thinking)

Language of instruction: Greek

Course Title: General methods in Genetics and Microbiology

Name of Lecturer: Technical and Laboratory staff

Course Code: BIOL-208 Type of course: Compulsory Level of course:

Year of study: 2 Semester/trimester: 3 ECTS: 3

Objectives of the course:
The primary objective of this course is for students to (1) learn fundamental approaches for experimentally investigating biological macromolecules, (2) learn the theoretical foundations for the methods used, and (3) understand the applicability of the biochemical methods to realistic situations.

Prerequisites: none

Course contents
1. Aseptic conditions in Microbiology (3 hours)
2. Liquid and solid culture media (3 hours)
3. Microscopic observation of microorganisms/Staining (3 hours)
4. Antibiotics/Resistance mechanisms (3 hours)
5. Quantitation of bacterial cells (3 hours)
6. Bacterial conjugation (3 hours)
7. Drosophila matings A' (3 hours)
8. Microbial Biotechnology (2 hours)
9. Tissue-specific gene expression in Drosophila embryos (3 hours)
10. Drosophila matings B' (3 hours)
11. Drosophila tutorial (2 hours)

Recommended reading:
24

- Brock Biology of Microorganisms, 12/E, Michael T. Madigan, John M. Martinko,, Paul V. Dunlap, David P. Clark, Publisher: Benjamin Cummings, c2009

Teaching methods: Introduction to the lab and practical training

Assessment methods: Delivery of each lab report and written examinations

Language of instruction: Greek

Course Title: English III

Name of Lecturer: Maria Koutraki

Course Code: BIL-211
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: C
ECTS: 3

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
With the completion of the course, students are expected to have a proficient knowledge of written English so as to give them the confidence to write articles, essays, summaries and CVs.

Prerequisites: None

Course contents:
Revision of advanced grammar and syntax, introduction to different mediums of writing for professional as well as educational use, giving definitions, writing summaries, translating scientific texts – focusing on Genetics, Genetic Engineering, Molecular biology and evolution- using sources, handling terminology, working on a series of authentic articles.

Recommended reading: English 3 File notes in the Library, English 3 links & extras in our blog: http://www.englishbiology.wordpress.com, scientific journals, newspaper and magazine articles

Teaching methods: Reading and comprehending texts in class, performing interactive group activities, writing in class, vocabulary build-up and grammar practice through Internet in class, commenting on issues related to biology in order to practice oral skills, PowerPoint presentations, practical writing exercises

Assessment methods: 3hr exam at the end of term, class participation, oral presentation of a report on biology-oriented topics, participation through class work & homework submitted throughout the semester

Language of instruction: English

2nd YEAR SPRING SEMESTER

Course Title: Methods for the functional analysis of biological macromolecules

Name of Lecturer: Technical and Laboratory staff

Course Code: BIL-251
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: D
ECTS: 3

Objectives of the course:
The primary objective of this course is for students to (1) learn fundamental approaches for experimentally investigating biological macromolecules, (2) learn the theoretical foundations for the methods used, and (3) understand the applicability of the biochemical methods to realistic situations.

Prerequisites: None

Course contents
1. DNA ligation and cloning (3 hours)
2. Transformation of bacteria (3 hours)
3. Lysis of bacterial cells expressing alkaline phosphatase (3 hours)
4. Enzyme purification with ion-exchange chromatography (4 hours)
5. Enzyme identification using polyacrylamide gel electrophoresis (3 hours)
6. Enzyme action (3 hours)
7. Polymerase Chain Reaction (3 hours)
8. Genotyping (3 hours)
9. DNA Hybridization using Southern I (3 hours)
10. DNA Hybridization using Southern I (3 hours)
11. Immunological methodologies (4 hours)

Recommended reading:

Teaching methods: Introduction to the lab and practical training
Assessment methods: Delivery of each lab report and written examinations
Language of instruction: Greek

Course Title: Biochemistry II
Name of Lecturer: Dimitris Tzamarias
Course Code: BIOL-252
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: D
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To understand principles of the structure and function of nucleic acids, the flow and regulation of genetic information, and the structure, function of cellular membranes and receptors and the mechanisms of molecular signaling and sensing.

Prerequisites: None

Course contents:
1. DNA, RNA and the flow of genetic information (structure of DNA and RNA, principles of gene expression and regulation)
2. Biosynthesis of Nucleotides (de novo biosynthesis of pyrimidines and purines, salvage pathways, reduction of ribonucleotides, regulation of biosynthetic pathways, mutations)
3. DNA replication and repair (DNA polymerases, separation of DNA strands, telomeres, topological properties of DNA, DNA damage and repair mechanisms)
4. RNA synthesis and maturation (prokaryotic and eukaryotic transcription, RNA polymerases, post-transcriptional modification of RNA, RNA splicing, transcriptional regulation)
5. Protein synthesis (tRNA aminoacylation, the ribosome, mRNA translation, fidelity of translation, translation factors, translational control)
6. Structure and function of lipids and cellular membranes (biosynthesis of membrane lipids and cholesterol, lipid mobilization and cholesterol metabolism, structure and function of transporters, channels and transmembrane receptors)
7. Membrane pumps and channels (ion transport across membranes, P-type ATPases, ligand- and voltage-gated channels, sugar transporters)
8. Molecular signalling (steroid hormone receptors, 7TM receptors, channel receptors, G proteins, adenylate cyclase and phosphoinositide cascades, calcium signalling, protein phosphorylation)
9. Integration of metabolism (key regulatory steps in energy production, organ-specific metabolic function and
Course Title: Genetics II
Name of Lecturer: Georgios Garinis
Course Code: BIOL-254
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: D
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Advanced genetics course for students specializing in Molecular Biology. Open for all other Biology students as an elective.

Prerequisites: None

Course contents:

Teaching methods: Lectures 3 hours/week, Supervised problem solving 0.5h/week.

Assessment methods: Written Examination

Language of instruction: Greek

Course Title: Physical Chemistry
Name of Lecturer: postdoc
Course Code: BIOL-256
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: D
Number of ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Advanced

Prerequisites:
- Thermodynamics:
 - Quantum Mechanics and Spectroscopy

C. Chemical kinetics
Reaction rate. The dependence of reaction rate on temperature. Cascade reactions. Examples of reaction mechanisms.

Teaching methods: 4h/week Lectures

Assessment methods: Written examinations

Language of instruction: Greek

Course Title: Biodiversity and Plant Evolutionary Ecology
Name of Lecturer: Stergios Pirintsos
Course Code: BIOL-257
Type of course: Core
Level of course:
Year of study: 2
Semester/trimester: D
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Adequate knowledge about a) evolutionary events in the history of plant life b) flora and vegetation of terrestrial ecosystems c) plant taxonomy and plant identification d) plant uses and e) bioinformatics in plant biodiversity issues

Prerequisites: None

Recommended reading:

Teaching methods: Lectures: 3 hours/week Lab: 3 hours/week Excursion: Mediterranean ecosystems of Greece

Assessment methods: Written Examinations: theory (50%) and lab (50%)
Language of instruction: Greek

<table>
<thead>
<tr>
<th>Course Title: English IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Maria Koutraki</td>
</tr>
<tr>
<td>Course Code: BIOL-258</td>
</tr>
<tr>
<td>Type of course: Core</td>
</tr>
<tr>
<td>Level of course:</td>
</tr>
<tr>
<td>Year of study: 2</td>
</tr>
<tr>
<td>Semester/trimester: D</td>
</tr>
<tr>
<td>ECTS: 3</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The objectives of this course are to enable Biology students to construct and use summaries and abstracts in scientific papers, to write and read a scientific paper for publication, to structure and phrase a laboratory report, to effectively write letters and discernible explanations of graphs and charts, to successfully follow and give instructions and explain procedures. Other objectives of this course include our students' being able to compile, filter and edit information, write a cohesive and coherent first draft and choose appropriate language. Our students eventually will be using the principles of technical writing to present their message effectively in high impact language and they will improve accuracy, brevity, and readability of their writing.

Prerequisites: None

Course contents: Reading, listening, paragraph structuring, introduction to different mediums of writing for professional and educational use (articles, abstracts, CVs, application forms, covering letters, reviews, essays, commentaries), practising various skills related to academic writing (coherence & cohesion, hedging, formality, complexity in sentence structure, argumentative and informative language), citing resources – CBE Manual Style and preparing oral presentations.

Recommended reading: English 4 File notes in the Library, English 4 links & extras in our blog:

http://www.englishbiology.wordpress.com, scientific journals, newspaper and magazine articles.

Teaching methods: Lectures, PowerPoint presentations, practical writing exercises

Assessment methods: 3hr end of term exam, written submission and oral presentation of a review paper, class participation and homework submitted throughout the semester

Language of instruction: English

<table>
<thead>
<tr>
<th>Course Title: Laboratory Course in Plant Biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Stergios Pirintsos</td>
</tr>
<tr>
<td>Course Code: BIOL-259</td>
</tr>
<tr>
<td>Type of course: Core</td>
</tr>
<tr>
<td>Level of course:</td>
</tr>
<tr>
<td>Year of study: 2</td>
</tr>
<tr>
<td>Semester/trimester: D</td>
</tr>
<tr>
<td>ECTS: 3</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Adequate knowledge about a) evolutionary events in the history of plant life b) flora and vegetation of terrestrial ecosystems c) plant taxonomy and plant identification d) plant uses and e) bioinformatics in plant biodiversity issues

Prerequisites: None

Course contents: Introduction: Temporal scales and biodiversity. Part A. Historical evolution of floras from the Precambrian up to the Tertiary, Plant Kingdoms, Phytogeographical areas of Europe, Historical evolution of Greek Flora, Flora and Vegetation of Greek terrestrial ecosystems, Vegetation of Cretan terrestrial ecosystems. Part B. Phylogeny and the construction of phylogenetic trees, Evolutionary events in the history of plant life, Overview of
green plant phylogeny, Algae, Fungi, Lichens, Bryophytes, Pteridothytes, General characteristics and taxonomy:

Recommended reading:

Teaching methods: Lectures: 3 hours/week Lab: 3 hours/week Excursion: Mediterranean ecosystems of Greece

Assessment methods: Written Examinations: theory (50%) and lab (50%)

Language of instruction: Greek

Course Title: Laboratory Course in Animal Biodiversity		
Name of Lecturer: Georgios Koumoundouros		
Course Code: BIOL-263	Type of course: Core	Level of course:
Year of study: 2	Semester/trimester: D	ECTS: 3

Objectives of the course (preferably expressed in terms of learning outcomes and competences The characteristics, taxonomy and phylogeny of the most important animal phyla.

Prerequisites: None

Course contents: Characteristics, taxonomy and phylogeny of the phyla: Porifera, Cnidaria and Ctenophora, Platyhelminthes, the Aschelminth phyla, Mollusca, Annelida, Arthropoda, Echinodermata, Hemichordata and Chaetognatha, Chordata.

Teaching methods: 3 h/week lectures, 3h/week lab. 2 days field trip

Assessment methods: Written examinations

Language of instruction: Greek

Course Title: Marine Biology		
Name of Lecturer: Maroudio Kentouri – Georgios Koumoundouros – Ioannis Karakassis		
Course Code: BIOL-265	Type of course: Core	Level of course:
Course Title: Laboratory Course in Marine Biology

Name of Lecturer: Maroudio Kentouri - Michael Pavlidis – Ioannis Karakassis

| Course Code: BIOL-266 | Type of course: Core | Level of course:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of study: 2</td>
<td>Semester/trimester: D</td>
<td>ECTS: 3</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Introductory university-level course dealing with the biology/ecology of marine organism

Prerequisites: None

Course contents:

Recommended reading:

Teaching methods: 3 hours lecture plus 3 hours laboratory training

Assessment methods: Written Examination

Language of instruction: Greek

3rd YEAR FALL SEMESTER

Course Title: Advanced methods for the analysis of cellular processes

Name of Lecturer: Technical and Laboratory staff

| Course Code: BIOL-300 | Type of course: Compulsory | Level of course:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives of the course:
The primary objective of this course is for students to (1) learn fundamental approaches for experimentally investigating cellular processes, (2) learn the theoretical foundations for the methods used, and (3) understand the applicability of the biochemical methods to realistic situations.

Prerequisites: None

Course contents
1. Function of cell membranes, ATPase activity (3 hours)
2. Measuring the water potential of plant cells (3 hours)
3. Molecular Genetics assays in yeast I (3 hours)
4. Molecular Genetics assays in yeast II (3 hours)
5. Isolation of lymphocytes from mouse spleen (3 hours)
6. Lymphoid and myeloid cell morphology (3 hours)
7. Immunization of experimental mice (4 hours)
8. Blood groups (3 hours)
9. Phagocytosis/lymphocyte response in mitogens (3.5 hours)
10. Cytotoxicity (4 hours)
11. Observing cell division with fluorescence microscopy (3 hours)

Recommended reading:
- Brock Biology of Microorganisms, 12/E, Michael T. Madigan, John M. Martinko, Paul V. Dunlap, David P. Clark, Publisher: Benjamin Cummings, c2009

Teaching methods: Introduction to the lab and practical training
Assessment methods: Delivery of each lab report and written examinations
Language of instruction: Greek
<table>
<thead>
<tr>
<th>Year of study: 3</th>
<th>Semester/trimester: E</th>
<th>ECTS: 6</th>
</tr>
</thead>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To introduce students to the field of enzymes, mechanisms of catalysis, related methods, and applications. To enhance critical thinking in science, organization, and presentation skills.

Prerequisites: Enzyme Biotechnology

Course contents: Topics:

- Course logistics/How to give a talk
- Introduction on Enzymes/Mechanisms of Catalysis
- Enzyme Kinetics, Regulation and Modifications
- Methods in protein purification/Protein interactions
- Enzymes in activity assays
- *de novo* Design and Directed Evolution
- Enzymes in history/Meet the enzyme (proteases, methyltransferases, redox enzymes, folding catalysts - chaperones)
- The RNA World
- Extremophilic Enzymes
- Enzymes in Health and Diseases

Recommended reading: Lecture notes and selected research/review publications

Teaching methods: Lectures and discussion sessions.

Assessment methods: Final examination (written), group presentations (oral)

Language of instruction: Greek

Course Title: Immunobiology
Name of Lecturer: Irene Athanassakis
Course Code: BOL:307
Type of course: Core
Level of course:
Year of study: 3
Semester/trimester: E
ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Acquisition of a general knowledge in the field of Immunology, including cellular, molecular, medical Immunology and Immunogenetics

Prerequisites: None

Course contents:

- **Cells of the immune system:** Description of the differentiation pathways of myeloid cells and B lymphocytes.
- **Organs of the immune system:** Structural and functional analysis of primary and secondary immune organs.
- **Differentiation of T lymphocytes:** Maturation and differentiation of T cells in thymic microenvironments. Positive and negative selection of T cells. **Biochemical and genetic analysis of immunoglobulins:** Definition of isotypes, allotypes and idiotypes. Description of structural characteristics and function of the different

Laboratory training:

1) Immune cell isolation from mouse spleen: counting of white cells, counting of alive/dead cells, elimination of dead cells using density gradient.
2) Morphology of lymphocytes and myeloid cells: observation of spleen cells after Giemsa staining, observation and identification of prepared samples from human peripheral blood.
4) Cytotoxicity: Estimation of T, B and macrophage cell content in mouse spleen using specific antibodies and complement.
5) Immunisation: Mouse immunization with sheep red blood cells, determination of antigen specific B cells and titration of the immune serum.

Virtual ELISA lab (http://www.hhmi.org/biointeractive/immunology/vlab.html)

Recommended reading: Introduction to Immunology (J. Decker), Immunology (J. Klein, V. Horejsi), Fundamental Immunology (W.E. Paul), Immunology (I.M. Roitt et al.), Immunobiology (C. Janeway et al.), Cellular and Molecular Immunology (A.K. Abbas et al.)

Teaching methods: Lectures and 6 laboratory sessions

Assessment methods: Written examination for the theoretical part and individual reports for each laboratory session

Language of instruction: Greek

Course Title: Biostatistics

Name of Lecturer: Konstadia Lika

Course Code: BOL-309 Type of course: Core Level of course:

Year of study: 3 Semester: E ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences): This course provides an introduction to a variety of statistical methods of use in describing and analyzing biological...
data. It includes a laboratory component in which biological data are analyzed using statistical software. No prior knowledge of the software will be assumed.

Prerequisites: There are no prerequisites.

Recommended reading: J. Zar, "Biostatistical Analysis"

Assessment methods: Three 45-minute lectures and three 45-minute computer labs per week

Language of instruction: Greek

Course Title: Biogeography

Name of Lecturer: Poulakakis Nikos

Course Code: BIOL-313

Type of course: Obligatory for the direction of "Environmental Biology and Management of Biological Recourses"

Level of course: Advanced

Year of study: 3

Semester/trimester: E

Number of ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences)

Prerequisites:

Typically none, but good knowledge of the following is highly recommended:

- Evolutionary Biology (less important – student should be familiar with the concepts of speciation/subspeciation/diversification, selection, adaptive radiation)
- Ecology (less important – student should be familiar with the concepts of ecosystems, habitats and basic ecological processes)
- Zoology/Biodiversity (less important)

Course contents: This course aims to provide you a theoretical background on the science of Biogeography. Biogeography studies the distribution of the biological diversity in space, seeking patterns and rules by emphasizing on the assessment of processes that shape biological diversity in a variety of time and space scales. It is a dynamic field where progress is rapid, fuelling both theoretical quests at the cutting edge of ecology and evolutionary biology, as well as practical applications in the fields of biological diversity and conservation on our planet. Some of the questions raised in biogeography are: Why a species or any given taxon (genus, family, order, etc.) follows the observed distribution in space? What allows a species to live there and what prevents it from settling different areas? What is the determining role of climate, topography, and the interactions with other species, in any given species distribution? How do different organisms replace each other along a gradient (habitat, climate, etc.)? How does a species end up being limited to its current distribution? Where did his ancestors live? How did historical events, such as Continental Drift, the glaciers of Pleistocene and the recent
climate change, have shaped the distribution of species? Why are the animals and plants of large, isolated regions such as Australia, New Caledonia and Madagascar so different than those of other nearby areas? Why are some groups of closely related species confined to the same area, while others are in opposite parts of the Earth? Why are there many more species in the tropics than in the temperate zones and the poles? How the isolated oceanic islands are colonized, and why are there fewer species on the islands than continental regions, although organisms are facing with the same types of habitats?

At the end of the course, the student should be able to: (1) understand the contents and the study purpose of the biogeography, (2) develop a critical view on the distribution patterns of the organisms, (3) make valid scientific questions and hypotheses on biogeography of species, (4) discuss the main theories and approaches in the context of biogeography, (5) understand the comparative method in the biogeography and generally in biology and (6) understand the processes of morpho-ecological adaptations of organisms and the spatial and temporal patterns of biodiversity.

Topics covered

- Introductory definitions, history of Biogeography, divisions
- The geographical, geological and climatic contexts
- The ecological framework (biomes)
- Distributions, biogeographical regions, barriers
- Dispersal, Vicariance and Migrations.
- Theoretical Biogeography
- Phylogeography
- Biogeography of Greece
- Biogeography of the Mediterranean Basin

Recommended reading:

Teaching methods: Three 45-minute lectures per week

Assessment methods: Written examination (75%) and homework assignments (25%)

Language of instruction: Greek

3rd YEAR SPRING SEMESTER

Course Title: Developmental Biology

Name of Lecturer: Despina Alexandraki

Course Code: BOL-350

Type of course: Core

Year of study: 3

Level of course:

Semester/trimester: F

ECTS: 6

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Learning the basic principles and questions of current Developmental Biology based on several model systems

Prerequisites: There are no prerequisites

Course contents: Introduction to fundamental principles and questions of development and to model
experimental systems, invertebrates and vertebrates (sea urchin, nematode, fruit fly, frog, fish, chicken, mouse).

Provided: Lectures in Powerpoint and texts from the internet. CDs, Videos.

Teaching methods: Lectures 4h/week

Assessment methods: Written examination

Language of instruction: Greek
Language of instruction: Lectures in Greek, Instructional materials in both Greek and English

Course Title: Methods of analysis for physiological processes

Name of Lecturer:

Course Code: BIOL-355
Course Code: BIOL-355
Course Code: BIOL-355

Year of study: 3
Year of study: 3
Year of study: 3

Objectives of the course:
The primary objective of this course is for students to (1) learn fundamental approaches for experimentally investigating physiological processes, (2) learn the theoretical foundations for the methods used, and (3) understand the applicability of the biochemical methods to realistic situations.

Prerequisites: none

Course contents

PART A: Physiology and Biochemistry of plants

1. **Plant Growth [A. Papadaki, K. Kotzabasis]**
 A. **Plant Nutrition:** A study of growth and development of seedlings characteristics of various plant species in nutrient solutions without essential minerals.
 B. **Photobiological control of germination through PhyA and PhyB:** Seeds undergo different illumination treatments (qualitative and quantitative) and the rate of germination is monitored.

2. **Plant morphogenesis in vitro [A. Papadaki, P. Moschou]**
 A. Directed plant morphogenesis in vitro in the presence of different concentrations of auxin and cytokinin.
 B. Quantitative determination of total phenolic substances in plants.

3. **Chloroplast biogenesis [A. Papadaki, K. Kotzabasis]**
 A. Photoconversion of etioplast to chloroplast: Study of the light dependent conversion of etioplasts to chloroplasts and the photoreduction of protochlorophyllide to chlorophyllide.
 B. Recording the structure and function of the photosynthetic apparatus in the context of chloroplast biogenesis using fluorescence induction techniques.

4. **Photosynthetic Activity - Hill Reactions [A. Papadaki, K. Kotzabasis]**
 A. Isolation of intact chloroplasts.
 B. Determination of chlorophyll amount.
 C. Determination of photosynthetic activity by Hill reactions in isolated chloroplasts.

5. **Abiotic stress [A. Papadaki, P. Moschou]**
 Determination of enzymatic activity of catalase and in situ localization of the superoxide anion in plants exposed to high salinity conditions.

PART B: Animal Physiology

6. **Membrane Potentials [D. Dokianaki, K. Sidiropoulou]**
 Diffusion, Facilitated diffusion, osmosis, active transport. Resting membrane potential, ion equilibrium potentials, action potential.

7. **Electrical signal transfer in the nervous system [D. Dokianaki, K. Sidiropoulou]**
 Electrical signal transfer in the passive axon, unmyelinated and myelinated axon. Postsynaptic potential in the neuromuscular junction and its properties.

8. **Anatomy of the Central Nervous System [D. Dokianaki, K. Sidiropoulou]**
 Observation of human brain model, demonstration of the perfusion technique, handling of a fixed mouse brain, preparation and observation of coronal brain slices.

9. **Neurobiological basis of behavior [D. Dokianaki, K. Sidiropoulou]**
 Introduction to the basic principles for handling laboratory animals for investigating the nervous system. Behavioral tasks to study anxiety and learning and memory in animals. Observation of brain slices that have been prepared using the Nissl staining and Golgi-Cox staining techniques.

10. **Cardiac function physiology – Electrocardiogram [D. Dokianaki, K. Sidiropoulou]**
 Recording of blood pressure, heart sounds, sensory stimulation and blood pressure, regulation of cardiac function. Using the electrocardiogram (EKG), Einthoven triangle, Cardiac axis.

11. **Pulmonary system – Metabolism regulation [D. Dokianaki]**
 Spirometry, comparative spirometry, glucose curve.
Objectives of the course (preferably expressed in terms of learning outcomes and competences)

The study of plant physiology is of great importance both in purely scientific terms and in possible applications. For example, the study of plant organisms may indicate new molecular paths that can be preserved throughout the tree of life. This has happened in the past with the discovery, for example, of inheritance mechanisms, gene silencing and transposable elements. Also, the study of plant physiology can indicate ways to improve plants to produce more or even produce novel products. Modern horticultural and agricultural systems require higher yield and quality combined with low production costs and reduced pesticide use to meet growing demand. These goals can only be achieved with sufficient knowledge of plant physiology. The aim of the course is to introduce students to the use of plants as experimental models, molecular biology of plants and metabolism, plant structure, and regulation of growth under various environmental conditions.

Prerequisites:
The course introduces students to the world of plants, analyzing their main physiological processes. At the same time, attempts are made to correlate the physiological processes of plants with those of other organisms, so that students acquire an overall knowledge of the physiology of the organisms and the evolutionary course. Each chapter presents the history of science and, as time permits, a presentation of modern work so that students can understand how new scientific knowledge is produced and built.

The general competencies that will be acquired by the students are:
1. Knowledge of basic concepts-terminology related to plant physiology.
2. Data analysis and synthesis, production of new research ideas, development of critical thinking.
3. Understand concepts related to various processes within the plant cell. Explaining the principles and practices of plant physiology, the lesson gives an insight into the detailed plant processes, how plants work, how they grow and react to environmental factors such as light, water and nutrition.
4. Synthesis and evaluation of experimental approaches to answer basic questions of physiology. Understanding concepts related to the comparative study of organisms (plant and animal for example).

Course contents:
1. Introduction (acquaintance, way of teaching, learning outcomes, why we study plants, plant cell)
2. Plant genomes (structure, organization, regulation, genetic engineering)
3. Water uptake (modes of transport, water balance, transfer of solutes)
4. Photosynthesis (light and dark reactions, physiology and ecology)
5. Structure (embryogenesis, meristems, organogenesis, phloem and xylem, modes of transport, systemic transport, aging)
6. Metabolism of lipids and secondary metabolites (respiration, glycolysis, oxidative pathways, lipid metabolism, main secondary metabolites and activity)
7. Inorganic nutrients and nutrition (main inorganic ions and role)
8. Signal transduction (responses to light and hormones)
9. Growth and development 1 (auxin, gibberellins, cytokines)
10. Growth and development 2 (ethylene, abscisic acid)
11. Growth and development 3 (brassinosteroids and other hormones)
12. Responses to stresses (developmental plasticity, main stresses, molecular mechanisms of responses)
13. Circadian rhythms (bloom, inner clock, photoperiod)

Recommended reading:
- Additional courses:

- Relevant journals:

- Websites:
 http://www.plantcell.org/content/teaching-tools-plant-biology

Teaching methods:
Lectures

Assessment methods:
One final exam

Language of instruction:
Greek, English

Course Title: Animal Physiology

Name of Lecturer: Kyriaki Sidiropouloy

Course Code: BIO357
Type of course: Core
Level of course:
Year of study: 3
Semester/trimester: F
ECTS:4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To learn the fundamentals of animal cell physiology and some of the most important physiological systems of vertebrates

Prerequisites: None

Course contents:

Basic principles of cellular physiology: membrane potential, action potential, ion channels, synaptic transmission, intracellular signalling pathways.

Course Title: Computational Biology

Name of Lecturer:

Course Code: BIOL315
Type of course: Core
Level of course:
Year of study: 3
Semester/trimester: F
ECTS: 5

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

- Introduction to the concepts of probability and statistics in the analysis of primary biological sequences.
- Brief description of available resources (databases and web-services) on the world wide web
- Introductory Analysis of nucleotide and protein sequences, performance of homology searches and basic phylogenetic analysis.
- Use of computational methods for genome analysis, comparative genomics and text mining.

Prerequisites: Basic Knowledge of Molecular Biology, Biochemistry, Evolutionary Biology.

Recommended reading:

1. Deonier, Tavare & Waterman. Computational Genome Analysis.
5. Course presentations.

Teaching methods: Weekly Lectures. Practical exercises

Assessment methods: Practical Exercises, Semester Projects. Final written examination.

Language of instruction: Greek (English if necessary)

4TH YEAR FALL SEMESTER

ELECTIVE COURSES

- **BIOMOLECULAR SCIENCES AND BIOTECHNOLOGY**
Course Title: Crystal Structure Determination of Biological Macromolecules

Name of Lecturer: S. Maragkaki (postdoc)

Course Code: BIOC-406

<table>
<thead>
<tr>
<th>Type of course:</th>
<th>Elective</th>
<th>Level of course:</th>
<th>Semester/trimester:</th>
<th>ECTS: 4</th>
</tr>
</thead>
</table>

Year of study: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To introduce students to the basic steps of macromolecular crystallography

Prerequisites: Basic physics, biology

Course contents: Crystallization techniques. Symmetry & Space Groups. Principles of X-ray Diffraction and the Phase Problem. Structure Determination and Refinement.

Recommended reading: J. Drenth, Principles of X-ray Crystallography

Teaching methods: Lectures & Internet based teaching

Assessment methods: Written exam

Language of instruction: Greek, English

Course Title: RNA

Name of Lecturer: Efthimia Tsagri

Course Code: BIOC-410

<table>
<thead>
<tr>
<th>Type of course:</th>
<th>Elective</th>
<th>Level of course:</th>
<th>Semester/trimester:</th>
<th>ECTS: 4</th>
</tr>
</thead>
</table>

Year of study: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To understand mechanisms of plant gene structure, regulation, expression, and development and learn some applications of plant biotechnology

Prerequisites: Molecular Biology, Structure and Organization of the Plant Cell

Course contents: DNA and genomes of plants. Transcription, examples of induction and repression mechanisms. RNA structure, protein coding and non coding genes. RNA processing and stability. Transcriptional and posttranscriptional silencing. Translation, rules and exceptions. Plasticity of plant development in a changing environment. Applications in Plant Biotechnology

Recommended reading: Chapters from: Biochemistry and Molecular Biology of Plants (ASPB), Mechanisms of Plant Development (O. Leyser), selected publications

Teaching methods: Lectures and reading course

Assessment methods: Written examination and/or presentation of specific subjects

Language of instruction: Greek

Course Title: Cell Growth, Proliferation and Cancer

Name of Lecturer: George Zachos

Course Code: BIOC-412

<table>
<thead>
<tr>
<th>Type of course:</th>
<th>Elective</th>
<th>Level of course:</th>
<th>Semester/trimester:</th>
<th>ECTS: 4</th>
</tr>
</thead>
</table>

Year of study: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To
understand the cell biology of carcinogenesis and learn about recent advances in cancer therapy.

Prerequisites: Successful attendance of courses Cell Biology, Molecular Biology, Genetics I and Genetics II is recommended.

Course contents: Introduction in tumourigenesis: proto-oncogenes, oncogenes and oncosuppressors; mutagenesis, immortalisation and carcinogenesis; cell cycle control in vertebrate cells; The mitotic spindle checkpoint; Membrane receptors and signal transduction pathways: the ERK, JNK, p38MAPK and PI3 kinase pathways; Chromatin remodelling in carcinogenesis; DNA damage and responses; DNA repair pathways: mismatch repair, nucleotide excision repair; base excision repair, homologous recombination and non-homologous end-joining; Programmed cell death; Replicative senescence; Recent advances in cancer therapy.

Recommended reading: Molecular Biology of the cell, Alberts et al.

Teaching methods: Lectures

Assessment methods: Written examination

Language of instruction: Greek
Cultures, Aquaculture of Mediterranean finfish species

Prerequisites:
None

Course contents:
State-of-the-art and production of world aquaculture with emphasis on Mediterranean finfish species.

Recommended reading:
Relative scientific publications and lecture notes

Teaching methods:
Lectures

Assessment methods:
Written examination or project (written report and oral presentation)

Language of instruction:
Greek

<table>
<thead>
<tr>
<th>Course Title: Applied Ecology and Terrestrial Ecosystem Management</th>
<th>Type of course: Elective</th>
<th>Level of course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Stergios Pirintsos</td>
<td>Semester/trimester: G</td>
<td>ECTS: 4</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Adequate knowledge and understanding of the Terrestrial Ecosystem Management seen in the social context

Prerequisites:
Adequate knowledge of Ecology

Course contents:

Recommended reading:
6. Κουτούπα - Ρεγκάκου Ε. 2005. Δίκαιο του Περιβάλλοντος. Εκδόσεις Σάκκουλα, Αθήνα
7. Παναγόπουλος Θεόδωρος 2004. Δίκαιο Περιβάλλοντος. Εκδόσεις Σταμουλής, Αθήνα

Teaching methods:
Lectures: 3 hours/week, Excursion: National Parks and Protected Areas of Europe

Assessment methods:
Evaluation of projects (written report and oral presentation)

Language of instruction:
Greek
<table>
<thead>
<tr>
<th>Course Title: Marine Pollution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Ioannis Karakassis</td>
<td></td>
</tr>
<tr>
<td>Course Code: BIOL-409 Type of course: Elective Level of course:</td>
<td></td>
</tr>
<tr>
<td>Year of study: 4 Semester/trimester: G ECTS: 4</td>
<td></td>
</tr>
<tr>
<td>Objectives of the course (preferably expressed in terms of learning outcomes and competences</td>
<td></td>
</tr>
<tr>
<td>Understanding the main concepts related to pollution and environmental degradation</td>
<td></td>
</tr>
<tr>
<td>Knowledge of the main sources of marine pollution and their effects on marine organisms</td>
<td></td>
</tr>
<tr>
<td>Ability to retrieve scientific information and to evaluate its relevance to marine pollution issues.</td>
<td></td>
</tr>
<tr>
<td>Understanding the global issues related to anthropogenic pressures on the marine environment.</td>
<td></td>
</tr>
<tr>
<td>Prerequisites: None</td>
<td></td>
</tr>
<tr>
<td>Recommended reading: RB Clark: Marine Pollution, plus a list of recent research papers and reviews</td>
<td></td>
</tr>
<tr>
<td>Teaching methods: Lectures (2 h/week)</td>
<td></td>
</tr>
<tr>
<td>Assessment methods: Written examination (80%); paper presentation and analysis (20%)</td>
<td></td>
</tr>
<tr>
<td>Language of instruction: Greek</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Title: Benthic Ecology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Ioannis Karakassis</td>
<td></td>
</tr>
<tr>
<td>Course Code: BIOL-411 Type of course: Elective Level of course:</td>
<td></td>
</tr>
<tr>
<td>Year of study: 4 Semester/trimester: G ECTS: 4</td>
<td></td>
</tr>
<tr>
<td>Objectives of the course (preferably expressed in terms of learning outcomes and competences</td>
<td></td>
</tr>
<tr>
<td>Knowledge of the diversity of functional groups of organisms inhabiting marine sediments</td>
<td></td>
</tr>
<tr>
<td>Knowledge and understanding of the key geochemical variables affecting the distribution of benthic organisms</td>
<td></td>
</tr>
<tr>
<td>Understanding of the interactions of benthic organisms with environmental variables</td>
<td></td>
</tr>
<tr>
<td>Understanding the potential for using benthic sampling in environmental monitoring</td>
<td></td>
</tr>
<tr>
<td>Ability to analyse benthic ecological data and detecting patterns, clusters and disturbance</td>
<td></td>
</tr>
<tr>
<td>Prerequisites: None</td>
<td></td>
</tr>
<tr>
<td>Course contents: Marine Biology</td>
<td></td>
</tr>
<tr>
<td>Recommended reading: JS Gray: The ecology of marine sediments, plus a list of recent research papers and reviews</td>
<td></td>
</tr>
<tr>
<td>Teaching methods: Lectures (3 h/week), Practical exercises in data analysis (3h)</td>
<td></td>
</tr>
<tr>
<td>Assessment methods: written examination (80%); paper presentation and analysis (20%)</td>
<td></td>
</tr>
<tr>
<td>Language of instruction: Greek</td>
<td></td>
</tr>
</tbody>
</table>

➢ COMMON COURSES
Course Title: Photosynthesis

Name of Lecturer: Kiriakos Kotzabasis
Course Code: ΒΙΟΛ-440
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: G
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Specific knowledge focused on the molecular structure, function and bioenergetics of the photosynthetic apparatus. Impact of environmental changes on photosynthesis.

Prerequisites: There are no prerequisites.

Teaching methods: 3 hours lecture per week plus 10 hours lab session per semester.

Assessment methods: written examination (70%), project report and presentation (30%).

Language of instruction: Greek

Course Title: Introduction to biomedical imaging techniques

Name of Lecturer: George J. Tserveelakis
Course Code: BIOL-403DEM
Type of course: Elective
Level of course:
Year of study: 3
Semester/trimester: E
Number of ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Prerequisites:

Course contents:

5. Photoacoustic tomography (PAT): The photoacoustic effect. Stress and thermal confinement conditions. Factors determining photoacoustic waveform generation. PAT imaging systems and applications. Filtered back-projection algorithm in PAT.

Teaching methods: 2h/week Lectures

Assessment methods: Written examinations

Language of instruction: Greek

Course Title: Reading Course

Name of Lecturer: Faculty Member

<table>
<thead>
<tr>
<th>Course Code: B.IO.443</th>
<th>Type of course: Elective</th>
<th>Level of course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of study: 4</td>
<td>Semester/trimester: G</td>
<td>ECTS: 4</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The student concentrates in a scientific topic assigned by the instructor and is performing a literature research.

Prerequisites: None

Course contents: A specific scientific topic assigned by the instructor.

Recommended reading: Scientific papers assigned by the instructor.

Teaching methods: Frequent meetings with the instructor discussing the chosen topic of interest.

Assessment methods: Writing of a review paper on the scientific topic assigned.
Course Title: Special Issues in Cell Biology
Name of Lecturer: G. Chalepakis
Course Code: BIOL-416
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: G
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
The student is coming in contact with laboratory research of his/her interest. This is considered as a initial step in research which gives the student the opportunity to choose a laboratory for the undergraduate thesis dissertation.

Prerequisites: None

Course contents:
1. Biological membranes
2. Plasma membrane microdomains
3. Lipid Shells, Caveolae and Lipid Cavities
4. Membrane curvature and homoeostasis
5. Cytoskeleton
6. Ciliogenesis: building the cell’s antenna
7. Cilia defects and ciliopathies
8. Molecular architecture of centriole assembly
9. Septins: the fourth component of the cytoskeleton
10. Architecture and dynamic remodelling of the septin cytoskeleton during the cell cycle
11. The secretory pathway
12. Inheritance and biogenesis of organelles in the secretory pathway
13. Dynamics and divergent autophagy mechanisms
14. Implication of endosomes and lysosomes in gene transfer
15. Tumor biology of lysosomal storage disorders
16. Cellular cholesterol trafficking and transport
17. Mechanisms of pathogen entry through the endosomal compartments
18. Entry of viruses through the epithelial barrier
19. Exosomes, extracellular vesicles and their potential roles in regenerative medicine
20. Mitochondria: structure, functions and dysfunctions
21. Endoplasmic reticulum–mitochondria contacts
22. Mechanisms of mitophagy
23. The cell nucleus
24. Breaching the nuclear envelope in development and disease
25. Laminopathies: The nucleoskeleton as a genome-associated dynamic network of networks
26. The nucleoskeleton as a genome-associated dynamic network of networks
27. Extracellular matrix, components and functions
28. Extracellular matrix assembly and remodeling in development and disease
29. The function of fibroblasts in cancer
30. Cell junctions
31. Endothelial cell-cell junctions
32. Membrane nanotubes – cytonemes: dynamic long-distance connections between animal cells
33. Membrane tubulovesicular extensions as secretory and adhesive cellular organelles
34. The example of Hedgehog
35. Properties of polarized epithelial cells
36. Organelle positioning and cell polarity
37. Organization of vesicular traffic in epithelia
38. From cells to organs: building polarized tissue
39. Cell division
40. Asymmetric cell division: recent developments and their implications for tumour biology
41. Divisions of the stem cells of the skin
42. Modes of programmed cell death and the signals emanating from dying cells
43. Cell differentiation
44. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration
45. How cells change their phenotype

Recommended reading: Scientific papers provided by the instructor

Course Title: Quarterly Laboratorial Course
Name of Lecturer: Faculty Member
Course Code: BIOL-444
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: G
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The student is coming in contact with laboratory research of his/her interest. This is considered as a initial step in research which gives the student the opportunity to choose a laboratory for the undergraduate thesis dissertation.

Prerequisites: None

Course contents: Laboratory techniques.

Recommended reading: Scientific papers provided by the instructor
Teaching methods: Frequent meetings with the instructor and following up the research progress.

Assessment methods: Final report on the laboratory techniques and/or mini-project followed by the student.

Language of instruction: Greek

Course Title: Developmental Plant Biology

Name of Lecturer: Kriton Kalantidis

Course Code: BIOL-447

Type of course: Elective

Level of course: Advanced

Year of study: 4

Semester/trimester: G

ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Plant Model systems, Plant Molecular Biology Methodology, Principles of Plant Development

Prerequisites: Botany or General Plant Biology and Molecular Biology

Course contents: Plant Model systems, Methodology in Plant Developmental Biology, Embryo development, Shoot apical meristem, Root Development, Shoot Development, Leaf Development, Flower development, miRNAs in Plant developmental Biology

Recommended reading:

Mechanisms in Plant Development
Ottoline Leyser, Stephen Day
ISBN: 978-0-86542-742-6
Paperback
256 pages
May 2002, Wiley-Blackwe

Teaching methods: Lectures and Handouts

Assessment methods: Written Exam

Language of instruction: Greek

Course Title: Laboratorial Course - Green Biotechnology

Name of Lecturer: K. Kotzabasis, K. Kalantidis, P. Moschou, A. Papadaki, S. Pirintsos, P. Sarris, E. Tsagris, I. Vontas

Course Code: BIOL-445

Type of course: Elective

Level of course:

Year of study: 4

Semester/trimester: ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences)

Prerequisites: None

Course contents:

1. In vitro cultivation of plant cells and explants I - Micropropagation. [A. Papadaki]
2. In vitro cultivation of plant cells and explants II - Isolation and cultivation of protoplasts. [P. Moschou, A. Papadaki]
3. Methods of genetic modification of plants. [K. Kalantidis]
4. Induction methods of RNA silencing in plants. [K. Kalantidis]
5. Techniques of molecular virology. [E. Tsagris]
6. Modern approaches for determining pest sensitivity/resistance to pesticides in plant protection. [J. Vontas]
7. Introduction to the immune system of plants [P. Sarris]
8. Microalgal Biotechnology — Bioenergetic mechanisms of microalgae to produce high yield of hydrogen (H_2). [K. Kotzabasis]

9. Environmental Biotechnology — Combination of biodegradation of toxic OMW (Olive oil Mill Wastewater) phenolic compounds and high yield production of bio-hydrogen. [K. Kotzabasis]

10. Astrobiology — Extremophilic behavior of lichens with astrobiotechnological applications. [K. Kotzabasis, S. Pirintsos]

11. Pharmacognosy - Isolation and identification of pharmaceutically active substances from plants. [S. Pirintsos]

12. Pharmacognosy — Modern methods of solving research questions. [S. Pirintsos]

Teaching methods: 3h/week lab

Assessment methods:

Language of instruction: Greek

Course Title: Neurobiology

Name of Lecturer: Kyriaki Sidiropoulou

Course Code: BIOL-492
Type of course: Elective
Level of course:

Year of study: 4
Semester/trimester: H
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To learn the fundamentals of nerve cell and brain function

Prerequisites: Animal Physiology

Course contents: Brain anatomy and organization. Electrical properties of neurons. Ion channels. Firing patterns and information coding in neurons. Neurotransmitter systems. Synaptic transmission, synaptic plasticity, learning and memory. Sensory information processing in higher brain areas, perception. Motor system. Neurological disorders, schizophrenia, depression, addiction.

Recommended reading: ER Kandel, JH Schwartz, TM Jessel. Essentials of Neural Science and Behaviour.

Teaching methods: Lectures

Assessment methods: End-of-term paper and oral presentation of selected topic.

Language of instruction: Greek

4TH YEAR SPRING SEMESTER

ELECTIVE COURSES

➢ **BIOMOLECULAR SCIENCES AND BIOTECHNOLOGY**

Course Title: When Biochemistry meets Epigenetics

Name of Lecturer: Charalampos G. Spilianakis

Course Code: BIOL-414
Type of course: Elective
Level of course:

Year of study: 4
Semester/trimester: H
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The biochemical basis of the epigenetic mode of inheritance. The aim is to familiarize the student with the protein complexes and the biochemical approaches that define epigenetic inheritance in various model systems. The
epigenetic basis of disease.

Prerequisites: None

Course contents:

- **An introduction to Epigenetics**
- **Biochemical mechanisms of Epigenetics**

 DNA methylation, recognition of methylated CpG, demethylation in mammals, histone modifications, non-coding RNAs, microRNAs, the effect of chromosome organization, mechanisms of polycomb proteins

- **Biochemical approaches to study Epigenetics**

 Analysis of tissue-specific DNA methylation, methods for assessing genome-wide DNA methylation, methylation of Lysine-9 of Histone H3: role in heterochromatin modulation and tumorigenesis, chromatin modifications distinguish genomic features and physical organization of the nucleus, assessing epigenetic information

- **Model Organisms of Epigenetics**

 Eukaryotic microbes, Drosophila, mouse models of epigenetic inheritance, epigenetic regulatory mechanisms in plants

- **Metabolism and Epigenetics**

- **Functions of Epigenetics**

 Stem Cells and cellular differentiation, Epigenetic basis of skeletal muscle regeneration, X Chromosome Inactivation, genomic imprinting, Epigenetics of memory processes, transgenerational Epigenetics, aging Epigenetics

- **Evolutionary Epigenetics**

 Epigenetics in adaptive evolution and development

- **Epigenetic Epidemiology**

 The Effects of diet on Epigenetic processes, environmental agents and Epigenetics, impact of microbial infections on the human Epigenome and carcinogenesis, population pharmacoepigenomics

- **Epigenetics and Human Disease**

 Cancer Epigenetics, the role of Epigenetics in Immune disorders, Epigenetics of brain disorders, complex metabolic syndromes and Epigenetics, clinical applications of Histone Deacetylase Inhibitors

Recommended reading:

- Handbook of Epigenetics, Tollefsbol, Elsevier, 2011
- Epigenetics in Biology and Medicine, M.Esteller, Garland Science, 2008
- Transcriptional regulation in Eukaryotes concepts, strategies and techniques, M.Carey-S.Smale, CSHL press, 2000

Teaching methods: 3h/week lectures

Assessment methods: Written examinations

Language of instruction: Greek
Course Title: Plant Molecular Virology

Name of Lecturer: Efthimia Tsagri

Course Code: B IOL-460
Type of course: Elective
Level of course:

| Year of study: 4 | Semester/trimester: H | ECTS: 4 |

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To understand structure, replication, movement and spread of plant viruses, and methods to reduce their impact in crops.

Prerequisites: Microbiology

Course contents: Isolation, taxonomy and structure of plant viruses, Families and groups of plant RNA and DNA viruses and viroids (genome structure and expression, replication and movement, pathogenicity and resistance, biotechnological applications)

Recommended reading: Matthews Plant Virology (Ed. R. Hull), Fundamentals in Plant Virology (R.E.F. Matthews) and selected publications

Teaching methods: Lectures and reading course

Assessment methods: Written examination and/or presentation of specific studies

Language of instruction: Greek

Course Title: Special Topics in Immunology

Name of Lecturer: Irene Athanassakis

Course Code: B IOL-462
Type of course: Elective
Level of course:

| Year of study: 4 | Semester/trimester: H | ECTS: 4 |

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The course concentrates in three major Immunology topics through scientific paper presentation by the students themselves. The students come in direct contact with the most recent knowledge in all three topics and are able to express their own thought in regard to specific scientific questions.

Prerequisites: Immunobiology
Course contents: Topic 1: Major histocompatibility proteins: biosynthesis and role in the immune response, Topic 2: T cell receptor: signalling to T cell activation, Topic 3: Autoimmunity: mechanisms of autoimmunity induction and therapeutic approaches

Recommended reading: Twenty to 25 scientific review papers/topic

Teaching methods: Each topic starts with a lecture by the instructor defining the content of the session. The students are having 15 min presentations of specific papers giving the latest knowledge of the topic.

Assessment methods: Oral and written assessment. Each student gets a mark for the oral presentation in each topic. Upon completion of each topic, the students take a written examination. The final mark is given by the mean of three oral and three written examinations.

Language of instruction: Greek

Course Title: Developmental Biology of Drosophila

Name of Lecturer: Christos Delidakis

Course Code: BIOL-468

Type of course: Elective

Level of course: Year 4

ECTS: 4

Objective of the course (preferably expressed in terms of learning outcomes and competences)
Introduction to the field of Drosophila developmental biology. Emphasis on accessing and utilizing original scientific literature.

Prerequisites: Genetics I, Genetics II, Cell Biology, Molecular Biology

Recommended reading: Original literature (reviews, papers), Peter Lawrence: The Making of a Fly

Teaching methods: Lecture 2h/week

Assessment methods: Written Examination and homeworks

Language of instruction: Greek

ENVIRONMENTAL BIOLOGY AND MANAGEMENT OF BIOLOGICAL RESOURCES

Course Title: Management of Marine Biological Resources

Name of Lecturer: Koumoundouros Giorgos

Course Code: BIOL-453

Type of course: Elective

Level of course: Year 4

ECTS: 4

Objective of the course (preferably expressed in terms of learning outcomes and competences)

Prerequisites: None

Course contents: Fisheries resources, distribution, productivity, migration. The concept of fish stock. Methods for the study of fecundity, growth, age, survival/mortality. Modern methods for the analysis of biological resources. Legal aspects concerning the exploitation of marine resources.
Course Title: Topics in Physical Geography & Geomorphology

Name of Lecturer: Charalampos Fasoulas
Course Code: BIOL-407
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: G
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Introduction to earth processes like volcanism, plate tectonics, weathering etc. and their contribution to the development of landscape and certain landforms. Analysis of individual landforms and relief changes through time. Study and practices on geological, geomorphological and paleogeographic maps.

Prerequisites:

Course contents:
Introduction to earth processes like volcanism, plate tectonics, weathering etc. and their contribution to the development of landscape and certain landforms. Analysis of individual landforms and relief changes through time. Study and practices on geological, geomorphological and paleogeographic maps.

Recommended reading:
Doutsos Th.: Geology: Principles and Implementation. Leader Books. (in Greek)

Teaching methods: Lectures, multimedia presentations.

Assessment methods:
Written tests

Language of instruction: Greek

Course Title: Marine Biotechnology

Name of Lecturer: Maroudio Kentouri
Course Code: BIOL-455
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: H
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):
Introductory university-level course dealing with the biotechnological applications of marine organisms

Prerequisites: None

Course contents:

Recommended reading: Relative scientific publications

Teaching methods: Lectures

Assessment methods: Written examination or project (written report and oral presentation)

Language of instruction: Greek
Course Title: Laboratory Course Fauna of Greece
Name of Lecturer: Poulakakis Nikos
Course Code: BIOL-461
Type of course: Elective
Level of course: Advanced
Year of study: 4
Semester/trimester: H
Number of ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences)

Prerequisites:
Typically none, but good knowledge of the following is highly recommended:

- Zoology/Biodiversity (important)
- Biogeography (semi important, student should understand the causes of distributions, the concepts of barriers/corridors and the mechanisms of dispersal of animal species, the concepts of endemism, cosmopolitanism and insularity)
- Ecology (less important – student should be familiar with the concepts of ecosystems, habitats and basic ecological processes)
- Evolutionary Biology (less important – student should be familiar with the concepts of speciation/subspeciation/diversification, selection, adaptive radiation)

Course contents:
This course aims to provide you with the basic knowledge related to the genuine composition of the fauna of Greece, its extraordinary diversity and peculiarities, as well as the processes and mechanisms that shape and define it today and in the past. A large spectrum of Greek animal species, both Vertebrates and Invertebrates, in continental and insular Greek regions is treated for that reason. We also aim to develop the practical skills to carry out samplings on various animal taxa, to mount (or keep otherwise) animal samples and tissues and to construct and use databases of these specimens. In this course you will listen to topics on the contemporary geomorphology of the Greek landscapes, the causes from the past that led to this specific morphology, the climatic mainframe that interferes with the Greek landscapes, elements on paleogeography, paleoclimatology and paleoecology of Greece, hot spots of endemism and management of rare or threatened Greek animal species, as well as a “group per group” comprehensive analysis of the extant faunal elements of continental and insular Greece. Topics like: the exploitation of the Greek fauna, animals as indicators of environmental quality in Greece, the cultural value of the Greek fauna, etc., are also covered.

At the end of the course, the student should be able to know the distribution and composition of the main animal groups in Greece and to understand the mechanisms and processes that have shaped the Greek landscape and the faunal composition in the dominant ecosystems. Also, the student should develop a critical view of the observed distribution patterns, to understand the processes of morphological and ecological adaptations of the animals, the spatial and temporal dimensions of the Greek biodiversity, and finally to formulate valid scientific questions and assumes.

Topics covered
- The geomorphological context of Greece today
- The climate and ecological framework today
- Paleogeography, paleoclima and paleoecology of Greece
The most important animal groups in Greece

- Mollusks
- Arthropods (Spiders, Crustaceans, Myriapods)
- Arthropods (Insects - Part I)
- Arthropods (Insects - Part B)
- Other Invertebrates
- Amphibia
- Reptiles
- Birds
- Mammals
- Animal species hot spots in Greece
- Management of Endangered Species

Recommended reading:

Teaching methods: Three 45-minute lectures per week

Assessment methods: Written examination (85%) and homework assignments (15%)

Language of instruction: Greek

Course Title: Evolutionary Ecology
Name of Lecturer: Nikolaos Poulakakis
Course Code: BIOL-471 | **Type of course:** Elective | **Level of course:**
Year of study: 4 | **Semester/trimester:** H | **ECTS:** 4
Objectives of the course (preferably expressed in terms of learning outcomes and competences): The course is designed as an introduction to Molecular Ecology, a relatively new discipline that studies the relationships between natural history, genetics, and evolution.
Prerequisites: There are no prerequisites
Course contents: The subject area currently encompass a wide range of research topics including population and evolutionary genetics, phylogenetics, phylogeography, comparative phylogeography, conservation biology, the identification and assessment of species diversity, and the release of genetically modified organisms into the environment. Topics will include a survey of methods for studying genetic variation at the protein and DNA levels and the application of molecular genetic markers to research questions related to natural selection, gene flow, genetic drift, and non-random mating.
Recommended reading: Pianka, R.E. (2006) Evolutionary Ecology
Provided: Lectures in Powerpoint and texts from the internet.
Teaching methods: Three 45-minute lectures per week.
Assessment methods: Written examination (85%) and homework assignments (15%)
Language of instruction: Greek

COMMON COURSES

Course Title: Molecular Evolution
Name of Lecturer: Manolis Ladoukakis
Course Code: BIOL-446 | **Type of course:** Elective | **Level of course:**
Year of study: 4 | **Semester/trimester:** G | **ECTS:** 4
Objectives of the course (preferably expressed in terms of learning outcomes and competences): To understand the basic mechanisms which shape evolution of molecules
Prerequisites: basic molecular genetics and evolution
Recommended reading: Graur and Li “fundamentals of molecular evolution”
Teaching methods: a two-hour lecture weekly
Assessment methods: final exams
Language of instruction: Greek
Course Title: Photobiology

Name of Lecturer: Kiriakos Kotzabasis

Course Code: BIOL-463

Type of course: Elective

Level of course:

<table>
<thead>
<tr>
<th>Year of study: 4</th>
<th>Semester/trimester: H</th>
<th>ECTS: 4</th>
</tr>
</thead>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): Specific knowledge focused on the light perception, photoreceptors, light signal transduction chains and photoregulated responses in plants.

Prerequisites: There are no prerequisites

Recommended reading:

Teaching methods: 2 hours lecture per week

Assessment methods: written examination (70%), project report and presentation (30%)

Language of instruction: Greek

Course Title: Computational methods in Evolution

Name of Lecturer: Poulakakis Nikos, Ladoukakis Emmanouil, Pavlidis Pavlos (FORTH), Antoniou Aglaia (HCMR)

Course Code: BIOL-450

Type of course: Elective

Level of course: Advanced

<table>
<thead>
<tr>
<th>Year of study: 4</th>
<th>Semester/trimester: H</th>
<th>Number of ECTS: 4</th>
</tr>
</thead>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Prerequisites:
- Evolution (important)
- Basic bioinformatics (semi important - student should understand the concept of a biological sequence, know what an alignment is and how to construct it, and how to search sequence databases)
- Basic mathematics (less important, but student should not be afraid of math - the course has been designed to be accessible also for biology students)
- Knowledge of UNIX is not required but will be helpful (exercise manuals will introduce the subject gradually, and we will provide links to self-help resources)

Course contents: With this course we aim to provide you with the theoretical knowledge and practical skills to carry out molecular evolutionary analyses on sequence data. In this course you will learn how and why DNA and protein sequences evolve between and within species. Also, we will focus on analyzing within species sequences (e.g. human genome datasets) and infer the history of the species as well as understand how and where natural selection operates. On one hand, the course is focused on the computational methods for inferring phylogenetic trees from sequence data, giving an introduction to the fundamental theory and algorithms. This course will entail data retrieval and assembly, alignment techniques, phylogeny reconstruction, hypothesis testing, and population genetic approaches. On the other hand, the course is dealing with the properties of a sample of sequences and polymorphisms from a single species, thus introducing the concept of coalescent trees.
Although the study of molecular phylogenetics and evolution do require a certain level of mathematical understanding, this course has been designed to be accessible also for students with limited computational background (e.g., students of biology).

Topics covered
- Introduction to evolutionary theory and population genetics.
- Interpretation of molecular phylogenetic trees
- Dataset assembly and sequence alignment
- Models of substitution and advanced models of nucleotide substitution (gamma-distributed mutation rates, codon models and analysis of selective pressure).
- Reconstruction of phylogenetic trees using parsimony, distance based methods, maximum likelihood, and Bayesian techniques.
- Statistical analysis of biological hypotheses (likelihood ratio tests, Akaike Information Criterion, Bayesian statistics).
- Hypothesis testing in phylogenetics
- Estimating divergence times
- Coalescent model and inference from population data
- Inference of demographic history using the coalescent
- Detecting natural selection from polymorphic data
- Detecting selection from polymorphic data and divergence

Recommended reading:
- Inferring Phylogenies by Joseph Felsenstein, Sinauer Associates, Inc
- Phylogenetic Trees Made Easy. by Hall Barry, Sunderland, MA: Sinauer
- Gene Genealogies, Variation and Evolution: A primer in coalescent theory, by Jotun Hein, Mikkel Schierup, and Carsten Wiuf, Oxford University Press

Teaching methods: Three 45-minute lectures per week
Assessment methods: Written examination (85%) and homework assignments (15%)
Language of instruction: Greek

Course Title: Applications of Current Microscopy Techniques
Name of Lecturer: George Zachos
Course Code: BOL-493
Type of course: Elective
Level of course:
Year of study: 4
Semester/trimester: H
ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences): To understand the optical principles involved in light microscopy, the basic components of modern microscopes and imaging systems and their applications in answering questions of cell biology.

Prerequisites: N/A

Course contents: Fundamentals of light microscopy; lenses and optics; resolution and image formation; dark-field, polarisation, phase contrast and Differential Interference Contrast microscopy; fluorescence microscopy; confocal laser scanning, 2-photon and video microscopy; Fluorescence resonance energy transfer, Fluorescence lifetime imaging, Fluorescence recovery after photobleaching, Photoactivation, Total internal reflection fluorescence

Teaching methods: lectures
Assessment methods: written examination
Language of instruction: Greek

<table>
<thead>
<tr>
<th>Course Title: Reading Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Faculty Member</td>
</tr>
<tr>
<td>Course Code: BIOL-443</td>
</tr>
<tr>
<td>Year of study: 4</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The student concentrates in a scientific topic assigned by the instructor and is performing a literature research.

Prerequisites: None

Course contents: A specific scientific topic assigned by the instructor.

Recommended reading: Scientific papers assigned by the instructor.

Teaching methods: Frequent meetings with the instructor discussing the chosen topic of interest.

Assessment methods: Writing of a review paper on the scientific topic assigned.

Language of instruction: Greek

<table>
<thead>
<tr>
<th>Course Title: Quarterly Laboratorial Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Faculty Member</td>
</tr>
<tr>
<td>Course Code: BIOL-444</td>
</tr>
<tr>
<td>Year of study: 4</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences): The student is coming in contact with laboratory research of his/her interest. This is considered as a initial step in research which gives the student the opportunity to choose a laboratory for the undergraduate thesis dissertation.

Prerequisites: None

Course contents: Laboratory techniques.

Recommended reading: Scientific papers provided by the instructor

Teaching methods: Frequent meetings with the instructor and following up the research progress.

Assessment methods: Final report on the laboratory techniques and/or mini-project followed by the student.

Language of instruction: Greek

<table>
<thead>
<tr>
<th>Course Title: Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Charalampos Spilianakis</td>
</tr>
<tr>
<td>Course Code: BIOL-473</td>
</tr>
<tr>
<td>Year of study: 4</td>
</tr>
</tbody>
</table>

Objectives of the course

Description
Introduces fundamentals concepts in genome architecture and genomics including research approaches to uncover genetic variation and the relationship between genotype and phenotype. Prerequisite: BIOL207 – MOLECULAR BIOLOGY.
Contents
- Mapping Genomes
- Sequencing Genomes
- Genome annotation
- Identifying gene functions
- Eukaryotic nuclear genomes
- Genomes of prokaryotes and eukaryotic organelles
- Viral genomes and mobile genetic elements
- Accessing the genome
- The role of DNA-binding proteins in genome expression
- Transcriptomes
- Proteomes
- Genome expression in the context of cell and organism
- How genomes evolve

Learning Outcomes
- Knowledge and Understanding: All components of the course provide this to some degree but your lectures, in particular, offer an important framework upon which you can build attributes. This University considers itself to be a research-led institution and you will be exposed to cutting edge information and ideas as you progress through the course. In this course you will develop a comprehensive knowledge of genome structure, function and evolution, of tools to analyze genomic data and of methods for genetic manipulation.
- Research and Enquiry: These skills are enhanced by encouraging further reading of books, research papers and electronic materials, to embellish your lecture and practical material.
- Personal and Intellectual Autonomy: By reading and preparing materials for sessions, you will learn to synthesize your own views, develop reasoned arguments and refine scientific judgement. Such skills enhance your capacity for life-long and independent learning.
- Communication: This is a key attribute of all scientists and it is therefore important that you develop skills to interact constructively with others and convey knowledgeable and balanced scientific views.
- Personal Effectiveness: The ability to organize and summaries your thoughts and material in a flexible and accessible way are core features that are required for personal effectiveness. Planning, time management and reflection are central to this. Of course, these features also interlink with your personal and intellectual autonomy. By providing you with a timetable where key submission dates are highlighted, we are encouraging you to develop your effectiveness throughout the course. These same skills extend to other courses and also to your overall ability to maximize your achievement whilst at the University.

Prerequisites: None
Recommended reading: T.A.Brown, GENOMES 4, Garland Science – Taylor and Francis Group, 2018
Teaching methods: 3h/week lectures
Assessment methods: 6 online quizzes/tests (30% of final evaluation mark) and a final assessment (70% of final evaluation mark).

Language of instruction: Greek/English (offered to ERASMUS students)

<table>
<thead>
<tr>
<th>Course Title: Research and Communication Skills in Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Lecturer: Charalampos G. Spilianakis</td>
</tr>
<tr>
<td>Course Code: BIOL-474 Type of course: Elective Level of course: 8th</td>
</tr>
<tr>
<td>Year of study: 4 Semester/trimester: Spring Number of credits: 4 ECTS</td>
</tr>
</tbody>
</table>

Objectives of the course (preferably expressed in terms of learning outcomes and competences)

Aims
This module aims to provide training in core research and communication skills.

Learning Outcome
By the end of the module, a student will be able to demonstrate: (i) the ability to communicate science effectively, in both writing and orally, to peers and the general public; (ii) a knowledge of the principles that underpin the scientific method; (iii) a knowledge of the environment in which scientists fund and execute their research; (iv) identify and work towards targets for career development; and (v) develop skills necessary for self-managed and lifelong learning.
Student Contact Time: The majority of teaching will be in the form of lectures, each of which will focus on specific aspects of the module, demonstrating the necessary skills and then requiring students to use the new skills. The workshops will be both of a practical and theoretical nature. The tutorials will provide guidance for the tasks allocated during the workshops and expand on certain aspects of the module that are more amenable to smaller-group study. The lectures will provide an introduction to the themes that are developed in the workshops. Workshops will include those on scientific writing, presenting research to the media, and career development.

Prerequisites: None

Course contents:
This module provides training in the skills necessary to pursue a research career in Biology. The skills covered include: communication (both written and oral); advanced science writing (e.g. journal publications and grant applications). The module is divided into three main components, each consisting of workshops and training sessions: Research Funding and Communication, Science and the media, Effective marketing of your research skills.

- Write your CV.
- Communication (oral/written).
- Accomplish your goal in an interview.
- Keeping notes in the lab. Archiving, monitoring, storage of primary research data.
- How to write your Diploma Thesis.
- How to present primary research data to the general public.
- Seeking for fellowships - how to write your application – Ask for recommendation letters.
- Research Ethics – Plagiarism.

Recommended reading:
- Scott Berkun, Confessions of a Public Speaker, 2010 O’Reilly.
- Simon Howard, Creating a successful CV, 2009 Safari Books Online.
- Ken Pendler, Digital Colour in graphic design, 1998 Focal Press.
- Otto Yang, Guide to effective grant writing, 2005 Springer.
- Paul McGee, How to write a CV that works, 2006 HowtoBooks.
- Noah Lukeman, How to write a great query letter, 2007 AmazonShorts.
- Patrick Forsyth, How to write reports and proposals, 2010 The Sunday Times.
- Nicholas Oulton, Killer Presentations, 2009 HowToBooks.
- Nancy Duarte, Slideology, 2008 O’Reilly Media.

Teaching methods: 2h/week lectures

Assessment methods: Students will be required to produce reports and complete exercises to demonstrate that they have mastered the necessary skills to a sufficient extent.

- Essays on the focus of each lecture (1. Writing your CV, 2. Writing a message to a Professor/Committee, 3. Description of a Diploma Thesis structure, 4. Presentation of personal research/project in 3 minutes, 5. Writing a fellowship application, 6. Writing a fellowship application with a research project, 7. Evaluation of the Q&A sessions of primary research publications. (90%)
- Class participation (mandatory) (10%)

Language of instruction: Greek, English (for ERASMUS+ students)

Course Title: Special Topics in Biotechnology and Planta Imaging

Name of Lecturer: Panagiotis Moschou

Course Code: BOL-491

Type of course: Elective

Level of course: Advanced

Year of study: 4

Semester/trimester: H

ECTS: 4
Objectives of the course (preferably expressed in terms of learning outcomes and competences):

Special Topics in Biotechnology and Plant Imaging aims at delving into cellular mechanisms and their methodological exploration. Hence, we will discuss or suggest biological applications based on molecular biology and physiology. We will also emphasize in more classical biotechnological applications.

The course aims also to develop the critical thinking of students and introduce them to a series of experimental setups for being able to experimentally approach in a more coherent and multidisciplinary way topics relevant to biotechnology.

Upon successful completion of the course, students will be able to:
- Acquire state of the art knowledge in advanced technologies for identification of cellular mechanisms that can be used to produce new products
- Acquire knowledge for the advances that plant cells offer for the development of added value products
- Acquire knowledge that may allow them to develop or even establish settings in industry

Prerequisites:

Prior knowledge in cell biology and plant physiology is desirable

Recommended reading:

-relevant journals

-relevant websites
http://www.plantcell.org/content/teaching-tools-plant-biology

Teaching methods: Lectures 3h/week
Assessment methods:
Final written exam and/or presentation on a selected topic.

Language of instruction: Greek/English
Name of Lecturer: Electra Gizeli

Course Code: ΒΙΟ-495 Type of course: Elective Level of course: Advanced
Year of study: 4 Semester/trimester: H ECTS: 4

Objectives of the course (preferably expressed in terms of learning outcomes and competences):

The course is designed for students interested to become familiar with contemporary technologies and their application to biology and medical diagnostics. Briefly, the course will include in the first part, a description of the principle of operation of biosensors followed by their application to (i) the study of biomolecular interactions and (ii) molecular diagnostics for DNA, protein and bacteria detection. The second part will deal with the description of other platforms such as microarrays and “lab-on- chip” systems for the development of integrated point-of-care diagnostics. Finally, the application of nanoparticles to clinical analysis will be presented. A short introduction into practical considerations will be provided during a visit into Biosensors’ Laboratory. For the successful attendance of the course, good knowledge of Biochemistry I and structural biology is required.

Teaching methods: Lectures 2h/w with simultaneous power-point projections.

Assessment methods: Final written exams.

Language of instruction: Greek with English literature.

Financing opportunities for Undergraduate students

Scholarships and awards for undergraduates on a level of Department/School/Institute
To estimate student ranking for the purpose of honorary award or scholarship granting on a Department/School/Institute level, all mandatory courses per academic year are taken into account with the exception of English I, II, III. Calculation is carried out by adding course grades, multiplying their sum to their credit load and dividing the product by the sum of the courses’ credit load.

Public financing or other
Students are eligible to financing opportunities for their studies offered by various Institutes, as well as scholarship granting bequests.

Information
Department of Biology Secretariat
University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete
Tel.: 2810394401, Fax : 2810394404,
E-mail: secretary@biology.uoc.gr,
Web Page: http://www.biology.uoc.gr/